Purpose At high altitude, Lowlanders exhibit exacerbated fatigue and impaired performance. Conversely, Sherpa (native Highlanders) are known for their outstanding performance at altitude. Presently, there are no reports comparing neuromuscular fatigue and its etiology between Lowlanders and Sherpa at altitude. Methods At 5050 m, nine age-matched Lowlanders and Sherpa (31 ± 10 vs 30 ± 12 yr, respectively) completed a 4-min sustained isometric elbow flexion at 25% maximal voluntary contraction (MVC) torque. Mid-minute, stimuli were applied to the motor cortex and brachial plexus to elicit a motor-evoked potential and maximal compound muscle action potential (Mmax), respectively. Supraspinal fatigue was assessed as the reduction in cortical voluntary activation (cVA) from prefatigue to postfatigue. Cerebral hemoglobin concentrations and tissue oxygenation index (TOI) were measured over the prefrontal cortex by near-infrared spectroscopy. Results Prefatigue, MVC torque, and cVA were significantly greater for Lowlanders than Sherpa (79.5 ± 3.6 vs 50.1 ± 11.3 N·m, and 95.4% ± 2.7% vs 88.2% ± 6.6%, respectively). With fatigue, MVC torque and cVA declined similarly for both groups (24%-26% and 5%-7%, respectively). During the task, motor-evoked potential area increased more and sooner for Lowlanders (1.5 min) than Sherpa (3.5 min). The Mmax area was lower than baseline throughout fatigue for Lowlanders but unchanged for Sherpa. TOI increased earlier for Lowlanders (2 min) than Sherpa (4 min). Total hemoglobin increased only for Lowlanders (2 min). Mmax was lower, whereas TOI and total hemoglobin were higher for Lowlanders than Sherpa during the second half of the protocol. Conclusions Although neither MVC torque loss nor development of supraspinal fatigue was different between groups, neural-evoked responses and cerebral oxygenation indices were less perturbed in Sherpa. This represents an advantage for maintenance of homeostasis, presumably due to bequeathed genotype and long-term altitude adaptations.

Supraspinal fatigue and neural-evoked responses in Lowlanders and Sherpa at 5050 m / L. Ruggiero, C.J. Mcneil. - In: MEDICINE AND SCIENCE IN SPORTS AND EXERCISE. - ISSN 0195-9131. - 51:1(2019 Jan), pp. 183-192. [10.1249/MSS.0000000000001748]

Supraspinal fatigue and neural-evoked responses in Lowlanders and Sherpa at 5050 m

L. Ruggiero
Primo
;
2019

Abstract

Purpose At high altitude, Lowlanders exhibit exacerbated fatigue and impaired performance. Conversely, Sherpa (native Highlanders) are known for their outstanding performance at altitude. Presently, there are no reports comparing neuromuscular fatigue and its etiology between Lowlanders and Sherpa at altitude. Methods At 5050 m, nine age-matched Lowlanders and Sherpa (31 ± 10 vs 30 ± 12 yr, respectively) completed a 4-min sustained isometric elbow flexion at 25% maximal voluntary contraction (MVC) torque. Mid-minute, stimuli were applied to the motor cortex and brachial plexus to elicit a motor-evoked potential and maximal compound muscle action potential (Mmax), respectively. Supraspinal fatigue was assessed as the reduction in cortical voluntary activation (cVA) from prefatigue to postfatigue. Cerebral hemoglobin concentrations and tissue oxygenation index (TOI) were measured over the prefrontal cortex by near-infrared spectroscopy. Results Prefatigue, MVC torque, and cVA were significantly greater for Lowlanders than Sherpa (79.5 ± 3.6 vs 50.1 ± 11.3 N·m, and 95.4% ± 2.7% vs 88.2% ± 6.6%, respectively). With fatigue, MVC torque and cVA declined similarly for both groups (24%-26% and 5%-7%, respectively). During the task, motor-evoked potential area increased more and sooner for Lowlanders (1.5 min) than Sherpa (3.5 min). The Mmax area was lower than baseline throughout fatigue for Lowlanders but unchanged for Sherpa. TOI increased earlier for Lowlanders (2 min) than Sherpa (4 min). Total hemoglobin increased only for Lowlanders (2 min). Mmax was lower, whereas TOI and total hemoglobin were higher for Lowlanders than Sherpa during the second half of the protocol. Conclusions Although neither MVC torque loss nor development of supraspinal fatigue was different between groups, neural-evoked responses and cerebral oxygenation indices were less perturbed in Sherpa. This represents an advantage for maintenance of homeostasis, presumably due to bequeathed genotype and long-term altitude adaptations.
cortical voluntary activation; corticospinal excitability; high altitude; motor-evoked potential; acclimatization; adult; elbow; evoked potentials, motor; humans; male; muscle fatigue; muscle, skeletal; pyramidal tracts; transcranial magnetic stimulation; young adult; altitude
Settore BIO/09 - Fisiologia
gen-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Supraspinal_Fatigue_and_Neural_evoked_Responses_in.23.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 496.35 kB
Formato Adobe PDF
496.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/923775
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact