At present, ethylene is the most widely produced organic compound in the chemical industry. The main commercial way to obtain ethylene is by steam cracking of a wide range of hydrocarbon feedstocks, but biomass-derived ethanol can be catalytically dehydrated as a sustainable alternative route in order to exploit new renewable sources. The aim of this work is to design an optimal bioethanol-to-bioethylene plant, with a capacity of 445,652 ton/year, and to assess its economic feasibility. This design features an improved production capacity and intensified energy management. The main novelty of this study is the use of diluted bioethanol solutions, bypassing the energy intensive and expensive dehydration step. Moreover, while the first industrial bioethanol-to-bioethylene process uses NaOH to purify the outcoming flow from CO2, this plant uses diluted Methyldiethanolamine (MDEA), regenerated in situ. With this plant, the double of the capacity of the Braskem's plant, now the largest one, can be reached in an environmentally more sustainable manner. A pinch analysis was performed, in order to minimize the energy consumption of the process by optimizing the heat recovery systems. The economic analysis of the process consists of the evaluation of the total cost of the plant (TOC) including the sum of the CAPital EXpenditures (CAPEX) and the OPerating ones (OPEX), together with some sensitive profitability indexes (net yearly profit, net present value, net rate of return and cash flow analysis). The designed process presents an economically competitive solution compared to the current bioethylene production units. Assuming a premium price of between 0.293 $/kg for diluted bioethanol, the proposed plant is competitive with the lowest production cost for bioethylene (Brazil and India), while a sensitivity analysis on diluted bioethanol price evidenced that this option remains competitive still in Europe with a bioethanol cost 0.65 $/kg.

Ethylene from renewable ethanol : process optimization and economic feasibility assessment / M. Frosi, A. Tripodi, F. Conte, G. Ramis, N. Mahinpey, I. Rossetti. - In: JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY - KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING CHEMISTRY. - ISSN 1226-086X. - 104:(2021 Dec), pp. 272-285. [10.1016/j.jiec.2021.08.026]

Ethylene from renewable ethanol : process optimization and economic feasibility assessment

M. Frosi
Primo
;
A. Tripodi
Secondo
;
F. Conte;I. Rossetti
Ultimo
2021

Abstract

At present, ethylene is the most widely produced organic compound in the chemical industry. The main commercial way to obtain ethylene is by steam cracking of a wide range of hydrocarbon feedstocks, but biomass-derived ethanol can be catalytically dehydrated as a sustainable alternative route in order to exploit new renewable sources. The aim of this work is to design an optimal bioethanol-to-bioethylene plant, with a capacity of 445,652 ton/year, and to assess its economic feasibility. This design features an improved production capacity and intensified energy management. The main novelty of this study is the use of diluted bioethanol solutions, bypassing the energy intensive and expensive dehydration step. Moreover, while the first industrial bioethanol-to-bioethylene process uses NaOH to purify the outcoming flow from CO2, this plant uses diluted Methyldiethanolamine (MDEA), regenerated in situ. With this plant, the double of the capacity of the Braskem's plant, now the largest one, can be reached in an environmentally more sustainable manner. A pinch analysis was performed, in order to minimize the energy consumption of the process by optimizing the heat recovery systems. The economic analysis of the process consists of the evaluation of the total cost of the plant (TOC) including the sum of the CAPital EXpenditures (CAPEX) and the OPerating ones (OPEX), together with some sensitive profitability indexes (net yearly profit, net present value, net rate of return and cash flow analysis). The designed process presents an economically competitive solution compared to the current bioethylene production units. Assuming a premium price of between 0.293 $/kg for diluted bioethanol, the proposed plant is competitive with the lowest production cost for bioethylene (Brazil and India), while a sensitivity analysis on diluted bioethanol price evidenced that this option remains competitive still in Europe with a bioethanol cost 0.65 $/kg.
bioethanol; bioethylene; biorefinery; economic assessment; energy integration; process intensification
Settore ING-IND/25 - Impianti Chimici
dic-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Economics ehylene_2021-05-05-revised2.pdf

Open Access dal 26/12/2023

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 737.38 kB
Formato Adobe PDF
737.38 kB Adobe PDF Visualizza/Apri
Econ_ethylene.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/916032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
  • OpenAlex ND
social impact