We fully characterise the solvability of Rado equations inside linear combinations a(1)U + . . . + a(n)U of idempotent ultrafilters U is an element of beta Z by exploiting known relations between such combinations and strings of integers. This generalises a partial characterisation obtained previously by Mauro Di Nasso.

Rado equations solved by linear combinations of idempotent ultrafilters / L. Luperi Baglini, P.H. Arruda. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 305(2022 Jan 01), pp. 107897.1-107897.15. [10.1016/j.topol.2021.107897]

Rado equations solved by linear combinations of idempotent ultrafilters

L. Luperi Baglini
Primo
;
2022

Abstract

We fully characterise the solvability of Rado equations inside linear combinations a(1)U + . . . + a(n)U of idempotent ultrafilters U is an element of beta Z by exploiting known relations between such combinations and strings of integers. This generalises a partial characterisation obtained previously by Mauro Di Nasso.
Partition regularity; Rado equations; Ultrafilters;
Settore MAT/01 - Logica Matematica
1-gen-2022
ott-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Rado equations solved by linear combinations of idempotent ultrafilters.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 427.89 kB
Formato Adobe PDF
427.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/905385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact