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1. Introduction

A long studied problem in combinatorics deals with the partition regularity of Diophantine equations.

Definition 1.1. Let S be either N or Z, let m ∈ N and let P ∈ Z [x1, . . . , xm]. We say that the equation 
P (x1, . . . , xm) = 0 is partition regular on S if for every finite partition C1, . . . , Cr of S one can find an 
i ∈ {1, . . . , r} and a1, . . . , am ∈ Ci \ {0} such that P (a1, . . . , am) = 0.

The earliest known result about the partition regularity of equations is due to I. Schur (see [17]) who 
established the partition regularity of the equation x +y = z on N. Later, Rado generalised Schur’s Theorem 
and provided a necessary and sufficient condition for a finite system of linear homogeneous Diophantine 
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equations to be partition regular [16]. For a single linear homogeneous equation, Rado’s result reads as 
follows:

Theorem 1.2. (Rado’s Theorem) Let S be either N or Z. A linear homogeneous equation c1x1+· · ·+cmxm =
0, with integer coefficients, is partition regular on S if and only if there is a non-empty I ⊆ {1, . . . , m} such 
that 

∑
i∈I ci = 0.

Motivated by Rado’s Theorem, we introduce the following definition.

Definition 1.3. A linear homogeneous polynomial P (x1, . . . , xm) =
∑m

i=1 cixi, such that ci ∈ Z \ {0}, is said 
to be a Rado polynomial if there is a non empty I ⊆ {1, . . . , m} such that 

∑
i∈I ci = 0. If P is Rado, we 

will also say that the equation P (x1, . . . , xm) = 0 is a Rado equation.

Following the works of F. Galvin and S. Glazer (see [11, Section 5.6] for historical remarks), ultrafilters 
on semigroups have been one of the tools used for the study of partition regularity of equations. We identify 
the set of all ultrafilters on a set S to βS, namely the Čech-Stone compactification of S as a discrete space. 
The general relationship between partition regularity and ultrafilters, that can be made even more precise 
in an abstract setting (see e.g. [11, Theorem 5.7] or [5, Proposition 1.8]), can be formulated for Diophantine 
equations as follows:

Theorem 1.4. Let S be either N or Z, let m ∈ N, and let P ∈ Z [x1, . . . , xm] be given. The equation 
P (x1, . . . , xm) = 0 is partition regular on S if and only if there is an ultrafilter U ∈ βS such that for every 
A ∈ U , one can find a1, . . . , am ∈ A satisfying P (a1, . . . , am) = 0.

Motivated by the above result, we introduce a notation that we will often use in what follows.

Definition 1.5. Let S be either N or Z, let m ∈ N and P ∈ Z [x1, . . . , xm]. We say that an ultrafilter 
U ∈ βS witnesses the partition regularity of the equation P (x1, . . . , xm) = 0 if for all A ∈ U there exist 
a1, . . . , am ∈ A satisfying P (a1, . . . , am) = 0. In this case, we write U |= P (x1, . . . , xm) = 0.

In recent years, the “qualitative” problem of finding which classes of ultrafilters witness the partition 
regularity of a given equation has become important due to some new techniques that allow building new 
partition regular equations from equations whose partition regularity is witnessed by a common ultrafilter. 
This kind of idea has been used, e.g., in [1,3,5,13,14]. For instance, in [14] (see also [5]), it was shown that 
any ultrafilter that witnesses the partition regularity of both x + y = z and uv = t will also witness the 
partition regularity of x + y = uv among many others.

In particular, in [3], Di Nasso, using a nonstandard framework and considerations about strings of integers 
close to those that we will use in Section 4, has proven that certain linear combinations a1U + · · · + anU , 
with ai ∈ N, U ∈ βN, witness the partition regularity of a class of Rado equations.

Theorem 1.6. [3, Theorem 1.2] Let m > 2. For every c1, . . . , cm ∈ Z satisfying c1 + · · · + cm = 0, there are 
a1, . . . , am−2 ∈ N such that, for every additively idempotent ultrafilter U ∈ βN, the ultrafilter a1U + · · · +
am−2U witnesses the partition regularity of the equation c1x1 + · · · + cmxm = 0.

The above result is the major inspiration for this work; in fact, in this paper, we extend Di Nasso’s 
result by finding a complete characterisation of which Rado equations are solved by linear combinations 
of the form a1U + · · · + anU for a1, . . . , an ∈ Z and U ∈ βZ an additively idempotent ultrafilter; hence 
dropping Di Nasso’s assumptions that c1 + · · · + cm = 0 and U ∈ βN. This characterisation will use the 
relationship between the linear combinations a1U + · · · + anU and certain sets of strings of integers, i.e. 
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k-tuples of integers, for k ≥ 1. As an interesting consequence of our main Theorem 4.3, see Corollary 6.6, we 
prove that, up to multiplication by a scalar, the Schur’s Equation x + y = z is the only linear homogeneous 
equation in three variables satisfying the following:

• there exists k ∈ N and a1, . . . , ak such that for all additively idempotent ultrafilter U ∈ βZ, a1U + · · ·+
akU solves the equation x + y = z.

Notice that, as we will show, for all k ∈ N, a1, . . . , ak ∈ Z \{0} and additively idempotent ultrafilter U ∈ βZ, 
a1U + · · · + akU solves the Schur’s Equation.

The paper is organised as follows: in Section 2 we recall all the basic results about idempotent ultrafilters 
that we will need, particularly the definition of a strongly summable ultrafilters on semigroups; in Section 3
we will talk about the relationships between strings of integers, linear combinations of idempotent ultrafilters 
and solvability of equations by strings of integers; in Section 4 we will present our main result, namely the 
characterisation of which Rado equations are solved by which kind of linear combinations of idempotents. 
Our result uses the existence of strongly summable ultrafilters, which is independent from ZFC. In Section 5
we will show how a minor modification of our main result can be obtained in ZFC. Finally, in Section 6
we show some explicit examples, proving also that there are Rado equations P (x1, . . . , xm) = 0 such that 
for all (a1, . . . , an) there are idempotents U ∈ βZ so that a1U + · · · + anU does not witness the partition 
regularity of P (x1, . . . , xm) = 0.

2. Ultrafilters and their algebra

We assume that the reader knows the basic notions of the algebra on the Čech-Stone compactification 
of semigroups; in this Section, we only recall some known facts about idempotent ultrafilters and their 
connection with the partition regularity of equations. As it is well known, idempotent ultrafilters are related 
with the concept of finite products on semigroups: if (S, ·) is a semigroup, let ℘fin(S) denotes the collection 
of all non-empty finite subsets of S; given a sequence (xn)n∈N of elements of S and a non-empty finite 
F ⊆ N enumerated as n1 < · · · < nk, let

∏
n∈F

xn = xn1 · · · · · xnk
.

Define the set of all finite products of (xn)n∈N as the set

FP
(
(xn)n∈N

)
=

{∏
n∈F

xn | F ∈ ℘fin(N)
}
.

If S is an Abelian semigroup, e.g. (N, +) or (Z, +), and the additive notation is adopted instead, this notion 
is translated to finite sums as defined by

FS
(
(xn)n∈N

)
=

{∑
n∈F

xn | F ∈ ℘fin(N)
}
.

A set A ⊆ S that contains the finite products of some injective sequence is called an IP-set. It is well known 
that a subset A of S contains FP ((xn)n∈N) for some injective sequence (xn) if and only if A belongs 
n∈N
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to some idempotent ultrafilter U ∈ βS (see e.g. [11, Theorem 5.12]). As a consequence of this fact, one gets 
the famous Hindman’s Theorem2:

Theorem 2.1. (Hindman’s Theorem) For every finite partition C1, . . . , Cr of a semigroup S there exists an 
injective sequence (xn)n∈N and i ∈ {1, . . . , r} such that

FP((xn)n∈N) ⊆ Ci.

However, in general, given an idempotent ultrafilter U ∈ βS, the set of finite products of some injective 
sequence itself will not belong to U , even in the cases that S is either (N, +) or (Z, +). To have this stronger 
property, we have to consider a special class of ultrafilters (see [11, Chapter 12]), namely strongly summable 
ultrafilters:

Definition 2.2. An ultrafilter U on a semigroup S is said to be a strongly productive ultrafilter if for every 
A ∈ U one can find an injective sequence (xn)n∈N of elements of S such that FP

(
(xn)n∈N

)
⊆ A and 

FP
(
(xn)n∈N

)
∈ U . If S is Abelian and the additive notation is adopted, we call U a strongly summable 

ultrafilter instead.

One can easily deduce that, if U ∈ βZ is a strongly summable ultrafilter, either U or −U is a strongly 
summable ultrafilter3 in βN.

Theorem 2.3. [9, Theorem 2.3], [10, Lemma 2.2] If S is a free semigroup or a countable Abelian group, then 
every strongly productive ultrafilter on S is idempotent.

As a consequence of Theorem 2.3, every strongly summable ultrafilter on (N, +) or (Z, +) is idempotent. 
In [8, Theorem 1.1], the authors provide stronger generalisations of Theorem 2.3; nevertheless, as observed 
in [8, Conjecture 1.6], it is unknown, at the present time, if Theorem 2.3 holds for any semigroup.

A. Blass and N. Hindman proved that the existence of a strongly summable ultrafilters on N implies 
the existence of P-points on βN [11, Sections 12.3 and 12.5]; as proved by S. Shelah [18], the existence 
of P-points on βN cannot be obtained within ZFC, thus the existence of strongly summable ultrafilters 
is independent from ZFC. It is attributed to E. van Douwen [11, Sections 12.2 and 12.5] that if either 
the Continuum Hypothesis or the Martin’s Axiom hold, then there is a strongly summable ultrafilter on 
N, hence the existence of strongly summable ultrafilters4 is consistent with ZFC. More recently, in [6], T. 
Eisworth proved that cov(M) = c implies5 the existence of strongly summable ultrafilters on N (see also 
[7, Theorem 2.8]), thus weaking the assumption of the Martin’s Axiom. It is also known that cov(M) < c

is consistent with the existence of strongly summable ultrafilters on Abelian groups [7, Section 4.3].
Theorem 2.3 and the Lemma 2.4 below are the only technical results about strongly summable ultrafilters 

that we will use. The proof of the Lemma 2.4 is almost identical to the proof of [11, Lemma 12.20], which 
originally was proved for U ∈ βN and k = 4.

2 F. Galvin and S. Glazer were the first to give a proof of Hindman’s Theorem, in the case (S, ·) = (N, +), using idempotent 
ultrafilters.
3 Given a U ∈ βZ, we denote by −U the ultrafilter U−1 · U , where U−1 is the principal ultrafilter generated by −1; alternatively, 

A ∈ −U iff {k ∈ Z : −k ∈ A} ∈ U . Moreover, given a V ∈ βZ, we write V − U as an abbreviation for V + (−U).
4 Notice that several of the mentioned proofs were done for union ultrafilters [11, Definition 12.30]. Since the notions of union 

ultrafilters and strongly summable ultrafilters coincide on N, one can easily derive the existence of the latters from the existence 
of the formers.
5 If M is the ideal of meagre sets of R, the cardinal cov(M) is the covering of M, defined as min{|C| : C ⊆ M and

⋃
C = R}. The 

equality cov(M) = c is equivalent to the assertion that Martin’s Axiom holds for countable partial orders, which is independent 
from ZFC. The assertion cov(M) < c is equivalent to the fact that Martin’s Axiom fails for countable partial orders [7, Section 
1.1] and it is also independent from ZFC.
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Lemma 2.4. Let k ≥ 4, U ∈ βZ be a strongly summable ultrafilter and A ∈ U . Then there is an injective 
sequence (xn)n∈N in Z such that

1. FS
(
(xn)n∈N

)
⊆ A;

2. for each m ∈ N, FS
(
(xn)n≥m

)
∈ U ;

3. for each n ∈ N, |xn+1| > k| 
∑n

t=1 xt|.

Alongside other techniques, ultrafilters and their algebra have been useful in the study of partition 
regularity of equations and systems of equations since Galvin and Glazer’s proof of Hindman Theorem; for 
classical results such as Schur’s Theorem, van der Waerden’s Theorem, Hindman’s Theorem, the Central Set 
theorem, partition regularity of matrices, the Milliken-Taylor Theorem and Hales-Jewett Theorem, among 
others, see the monograph [11]. More recently, results for nonlinear equations have been proven also using 
ultrafilters in [3,5,13,14].

Although the definition of partition regularity can be stated more generally, we restrict ourselves here 
to the partition regularity of linear Diophantine equations on N or Z. As recalled in the introduction, the 
partition regularity of such equations has been characterised by Rado in [16]. When P ∈ Z[x1, . . . , xm] is a 
Rado polynomial, the set of ultrafilters witnessing the partition regularity of the equation P (x1, . . . , xm) = 0
has several good algebraic properties. We summarise known facts and their respective references in the 
Theorem below, in which K(βS) denotes the minimal bilateral ideal of βS.

Theorem 2.5. Let S be either N or Z, let m ∈ N and let P ∈ Z [x1, . . . , xm] be a linear homogeneous 
polynomial such that P (x1, . . . , xm) = 0 is partition regular on S. Let U , V ∈ βS. Then

(i) the set IP = {U ∈ βS | U |= P (x1, . . . , xn) = 0} is a closed multiplicative bilateral ideal of βS;
(ii) if U |= P (x1, . . . , xm) = 0 and V |= P (x1, . . . , xm) = 0, then for each a, b ∈ Z, aU + bV |=

P (x1, . . . , xm) = 0;
(iii) if U |= P (x1, . . . , xm) = 0, then U · V |= P (x1, . . . , xm) = 0 and V · U |= P (x1, . . . , xm) = 0;
(iv) if U ∈ βS is an additively minimal idempotent ultrafilter and P is a Rado polynomial, then U |=

P (x1, . . . , xm) = 0;
(v) if U ∈ K(βZ, ·), then U |= P (x1, . . . , xm) = 0.

Proof. The proof of (i) can be found in the proof of Proposition 1.8 of [5].
The proof of (ii) can be done using Theorem 3 of [14] and the fact that we are dealing with a linear 

homogeneous polynomial.
The truth of (iii) can easily derived from (i): as IP is a multiplicative bilateral ideal of βS and U ∈ IP

by hypothesis, for any V ∈ βS, U · V and V · U are both elements of IP .
The proof of (iv) is a consequence of Theorem 2 of [1], in which the authors proved that any additively 

minimal idempotent element6 of βS witnesses the partition regularity of any Rado equation.
To prove (v), let us observe that, as IP is a multiplicative bilateral ideal of βS and by the definition of 

the minimal bilateral ideal, K(βS, ·) ⊆ IP and the fact that IP is closed ensures that K(βS, ·) ⊆ IP . As 
such, any element of K(βS, ·) witnesses the partition regularity of any Rado equation. �

Although we will use the above results only in the linear case, we recall here that Theorem 2.5 displayed 
a major importance in the study of the partition regularity of nonlinear polynomials in [4,5,13,14].

6 If S is either N or Z, an additively idempotent ultrafilter U ∈ βS is essential if every A ∈ U has positive Banach density. In [1, 
Theorem 2], the authors proved that any essential idempotent ultrafilter witnesses the partition regularity of any Rado system. As 
observed in the paragraph before [2, Theorem 1.14], every additively minimal idempotent ultrafilter is also an essential idempotent.
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3. String solutions to linear polynomials

In this section we introduce basic results and notations about the relationships between strings of integers, 
ultrafilters and partition regularity problems. The relationship is well known in the context of Milliken-Taylor 
systems, as recalled in the Introduction. Here, however, we are interested in the relationships with single 
linear equations. We recall some basic facts from [4]; however, whilst in that paper linear combinations of 
ultrafilters where studied from the point of view of nonstandard analysis, we will not use a nonstandard 
approach here. We denote by N0 the set of all non-negative integers, i.e. N0 = N ∪ {0}. In this section, 
consider S to be either N0 or Z.

Definition 3.1. For each integer k ≥ 0, let Sk be the set of all k-tuples or k-strings of elements of S (a 0-tuple 
is the empty string). Denote by S<ω the set of all finite strings of elements of S, i.e. S<ω =

⋃
k≥0 S

k.

Definition 3.2. Given a string σ = (a1, . . . , an) ∈ S<ω and an ultrafilter U ∈ βS, we define the linear 
combination of U times σ to be the ultrafilter

σU = a1U + · · · + anU .

Different strings may generate the same ultrafilter: for example, if U ∈ βZ is an additively idempotent 
ultrafilter, then (1, 1)U = (1)U . This leads to introduce the following equivalence relation:

Definition 3.3. Let ≈ be the smallest equivalence relation on S<ω such that

1. the empty string () is equivalent to (0);
2. for any a ∈ S, (a) is equivalent to (a, a); and
3. ≈ is coherent with concatenation; i.e. if σ ≈ σ′ and τ ≈ τ ′ then στ ≈ σ′τ ′.

If σ ≈ τ we say that σ is coherent with τ . The equivalence class of σ ∈ S<ω under the relation ≈ is 
denoted by G(σ).

As an example, the string (1, −2, 3) ≈ (0, 1, 1, −2, −0, −2, 0, 0, 3, 3, 0, 3). It is known that the equivalence 
relation ≈ characterises linear combinations σU for σ ∈ N<ω and U ∈ βZ, in the following sense:

Theorem 3.4. Let σ, τ ∈ Z<ω. The following facts are equivalent:

1. σ ≈ τ ;
2. for every additively idempotent ultrafilter U ∈ βZ, σU = τU ; and
3. for every additively idempotent ultrafilter U ∈ βN, σU = τU .

Proof. The proofs of the equivalence (1)⇔(3) can be found in [3, Theorem 3.6]. To prove the equivalence 
(1)⇔(2), first note that any additively idempotent ultrafilter U ∈ βZ satisfies U ∈ βN \N or −U ∈ βN \N. 
Hence, the result follows applying [12, Corollary 4.2]. �

From the above discussion, it has to be expected that properties of linear combinations σU should 
correspond, somehow, with properties of σ.

We define operations between strings componentwise; when c ∈ Z and σ = (a1, . . . , an) ∈ S<ω, we let 
cσ := (ca1, . . . , can); and, if τ = (b1, . . . , bn) ∈ S<ω, then σ + τ := (a1 + b1, . . . , an + bn). Moreover, we let 
0 denote a string with all entries equal to 0, independently of its length.
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Definition 3.5. A string (a1, . . . , an) in Z<ω is called reduced if

1. for every i ∈ {1, . . . , n − 1}, ai �= ai+1; and
2. for every i ∈ {1, . . . , n}, ai �= 0.

Definition 3.6. Let σ ∈ Z<ω and let P ∈ Z [x1, . . . , xm] be a linear homogeneous polynomial with coeffi-
cients c1, . . . , cm. We say that the equation P (x1, . . . , xm) = 0 has a solution in G(σ) if there are strings 
σ1, . . . , σm ∈ G(σ) all of the same size such that P (σ1, . . . , σm) =

∑m
i=1 ciσi = 0. This solution will be 

called injective if the strings σ1, . . . , σm are mutually distinct.

Note that, if σ1, . . . , σm ∈ Z<ω have the same length and are, in this order, the columns of the matrix 
M , then, given c1, . . . , cm ∈ Z, we have that

M(c1, . . . , cm)T = c1σ1 + · · · + cmσm.

Using this fact, one can easily prove the following:

Lemma 3.7. Given c1, . . . , cm ∈ Z \{0}, let P (x1, ..., xm) =
m∑
i=1

cixi be a homogeneous linear polynomial and 

σ ∈ Z<ω. The following conditions are equivalent:

1. P has a solution in G(σ);
2. there exists a matrix M whose columns are coherent with σ such that M(c1, ..., cm)T = 0.

Moreover, also the following conditions are equivalent:

1. P has an injective solution in G(σ);
2. there exists a matrix M whose columns are coherent with σ and mutually distinct such that M(c1, ..., cm)T =

0.

An important fact that we will use about linear combinations of the form σU is that they contain sets 
with a peculiar structure. If n ≥ 2 and F1, . . . , Fn are finite sets of natural numbers, we write F1 < · · · < Fn

whenever maxFi < minFi+1, for every i < n.

Definition 3.8. Let (xn)n∈N be a sequence of integers and σ = (a1, . . . , an) be a reduced string of integers. 
We define the (σ, (xn)n∈N)-Milliken-Taylor system MT(σ, (xn)n∈N) to be the set

⎧⎨
⎩

n∑
i=1

ai

⎛
⎝∑

j∈Fi

xj

⎞
⎠ | ∀i ≤ n Fi ∈ ℘fin(N) and F1 < · · · < Fn

⎫⎬
⎭ .

Special Milliken-Taylor systems will be used in the proof of our main result. Notice that the presence of 
Milliken-Taylor systems inside sets belonging to some linear combination of an ultrafilter is ensured by the 
following result7:

Theorem 3.9. [11, Theorem 17.32] Let (xn)n∈N be a sequence of integers and U ∈ βZ be an additively 
idempotent ultrafilter such that, for all m ∈ N, FS((xn)n≥m) ∈ U . Given any reduced string of integers σ, 
MT(σ, (xn)n∈N) ∈ σU .

7 The result was originally proven for U ∈ βN, but it is immediate to generalise it to βZ by mapping U ∈ βZ \ βN to −U .
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4. Polynomials solved by linear combinations of ultrafilters

In the previous sections, we recalled (almost) all results that we need to study our main problem, namely: 
given a reduced string σ ∈ Z<ω and an idempotent U ∈ βZ, for which kind of linear homogeneous polyno-
mials P ∈ Z [x1, . . . , xm] does σU witness the partition regularity of P (x1, . . . , xm) = 0?

When U is a minimal idempotent, the short answer is: always. Actually, in this case we have an even 
more general result:

Theorem 4.1. Let U1, . . . , Un ∈ βZ be additively minimal idempotent ultrafilters, (a1, . . . , an) a reduced 
string of integers and P ∈ Z [x1, . . . , xm] a Rado polynomial, then a1U1 + · · ·+ anUn witnesses the partition 
regularity of the equation P (x1, . . . , xm) = 0

Proof. By the item (iv) of the Theorem 2.5, any additively minimal idempotent of βN witnesses the partition 
regularity of the equation P (x1, . . . , xm) = 0; combining this fact with an inductive use of the item (ii) of 
the Lemma 2.5, we conclude our proof. �

From the above result we see that for any Rado polynomial P ∈ Z[x1, . . . , xm] and any additively
minimal idempotent U ∈ βZ, all linear combinations of U witness the partition regularity of the equation 
P (x1, . . . , xm) = 0. It turns out that the additively minimal idempotents ultrafilters are not the only class 
of ultrafilters with this property.

Proposition 4.2. There exists an additively idempotent ultrafilter U ∈ βZ such that

1. U is not minimal;
2. for all m ≥ 2, for all Rado polynomial P ∈ Z[x1, . . . , xm] and for all reduced string σ ∈ Z<ω, σU |=

P (x1, . . . , xm) = 0.

Proof. From Theorem 2 of [1] and item (ii) of the Theorem 2.5, we know that any linear combination of an 
essential idempotent solves any Rado polynomial; in [2, Theorem 1.14], the authors proved that the class 
of all essential idempotent ultrafilters is strictly larger than the class of all minimal idempotents. �

Now, let ESS be the statement “there exists a strongly summable ultrafilter on Z”. Our main result is:

Theorem 4.3. (ZFC+ESS) Let P ∈ Z[x1, . . . , xm] be a linear homogeneous polynomial and σ ∈ Z<ω be a 
reduced string. The following facts are equivalent:

1. For all idempotent ultrafilters U ∈ βZ we have that

σU |= P (x1, . . . , xm) = 0;

2. There exists a strongly summable ultrafilter U ∈ βZ such that

σU |= P (x1, . . . , xm) = 0;

3. P has a solution in G(σ).

Although the proof of the equivalence between (1) and (3) in Theorem 4.3 can be done entirely within 
ZFC, we first present our proof using strongly summable ultrafilters because they naturally have the string-
like structure that we will use in the proof.
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The first result we need to recall is the following Theorem8 from [3], which is a particular case of [15, 
Theorem 5.4], that shows the implication (3) ⇒ (1) in Theorem 4.3.

Lemma 4.4. Let U ∈ βZ be an additively idempotent ultrafilter, σ ∈ Z<ω a reduced string and P ∈
Z[x1, . . . , xm] be a linear homogeneous polynomial that has a solution in G(σ). Then σU |= P (x1, . . . , xm) =
0.

The core of the proof of Theorem 4.3 is the following property of strongly summable ultrafilters. Basically, 
it says that strongly summable ultrafilters contain sets of sums that are so sparse that they behave as strings.

Lemma 4.5. Let U be a strongly summable ultrafilter and σ ∈ Z<ω be a reduced string. If P (x1, . . . , xm) ∈
Z [x1, . . . , xm] is a linear homogeneous polynomial such that σU |= P (x1, . . . , xm) = 0, then P (x1, . . . , xm) =
0 has a solution in G(σ).

Proof. Let c1, . . . , cm be the coefficients of P and consider σ = (a1, . . . , an). Let M =
∑n

i=1

(∑m
j=1 |aicj |

)
+

1. By Lemma 2.4 there is a sequence of integers (zt)t∈N such that, for all k ∈ N, FS
(
(zt)t≥k

)
∈ U and |zt+1| >

M
∑t

i=1 |zi|. If Y = MT(σ, (zt)t∈N), by Theorem 3.9, we have that Y ∈ σU . As σU |= P (x1, . . . , xm) = 0, 
one can find y1, . . . , ym ∈ Y such that P (y1, . . . , ym) = 0. By the definition of Y , for every j ≤ m and i ≤ n, 
one can find natural numbers d1,i,j < · · · < dki,j ,i,j such that yj =

∑n
i=1

∑ki,j

t=1 aizdt,i,j
and, for each i < n, 

dkj ,i,j < d1,i+1,j . Hence, P (y1, . . . , ym) =
∑m

j

∑n
i=1

∑ki,j

t=1 aicjzdt,i,j
.

Consider d̄ = max{dt,i,j | j ≤ m and i ≤ n and t ≤ ki,j} and for each i ≤ n, j ≤ m and d ∈ {0, . . . , d̄}, 
define

δi,j,d =
{

1, if aizd appears in yj ;
0, otherwise.

Then,

P (y1, . . . , ym) =
n∑

i=1

m∑
j=1

d̄∑
d=0

aicjδi,j,dzd. (4.1)

We claim that the following are equivalent:

a) P (y1, . . . , ym) = 0;
b) for all d ∈ {0, . . . , d̄}, 

∑n
i=1

∑m
j=1 aicjδi,j,d = 0.

That b) implies a) is immediate. To prove that a) implies b), we proceed by contradiction. If b) is false, 
it is possible to find the greatest element d̃ among all d ∈ {0, . . . , d̄} such that 

∑n
i=1

∑m
j=1 aicjδi,j,d �= 0. By 

definition, for any d > d̃, 
∑n

i=1
∑m

j=1 aicjδi,j,d = 0. Hence, from the equation (4.1), one has

n∑
i=1

m∑
j=1

d̃∑
d=0

aicjδi,j,dzd = 0. (4.2)

Then,

8 Di Nasso proved, with nonstandard methods, this result for U ∈ βN and σ ∈ N<ω; however, its proof generalises in a 
straightforward way to βZ and Z<ω .
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∣∣∣∣∣∣
d̃−1∑
d=0

n∑
i=1

m∑
j=1

aicjδi,j,dzd

∣∣∣∣∣∣ ≤
d̃−1∑
d=0

⎛
⎝ m∑

i=1

m∑
j=1

|aicj |

⎞
⎠ zd < M

∣∣∣∣∣∣
d̃−1∑
d=0

zd

∣∣∣∣∣∣ < zd̃,

which is absurd since, from equation (4.2) one can derive

∣∣∣∣∣∣
d̃−1∑
d=0

n∑
i=1

m∑
j=1

aicjδi,j,dzd

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

aicjδi,j,d̃zd̃

∣∣∣∣∣∣ .
Hence, the claim is proved.
Let us define an m ×(d̄+1) S by constructing its columns. For each j ≤ m, the j-th column sj = (sd,j)d̄d=0

of S is defined as

sd,j =
{
aj , if δi,j,d = 1;
0, otherwise.

This vector is well defined as for all j1, j2 ≤ m, i ≤ n and d ∈ {0, . . . , d̄}, we have that δi,j1,d = δi,j2,d = 1
implies j1 = j2. As each yj has the form yj = a1zd1,1,j + · · · + a1zdki,j ,1,j

+ a2zd1,2,j + · · · + anzdkn,j ,n,j
with 

dt,i,j < dt+1,i,j for all j ≤ m, i ≤ n and t < ki,j , and dki,j ,i,j < d1,i+1,j for each i < n, we trivially have that 
each sj is equivalent to σ; thus S is coherent with σ. Therefore, for each d ∈ {0, . . . , d̄}, the d-th component 
of S(c1, . . . , cm)T is 

∑m
i=1

∑n
j=1 ciajδi,j,d, which is zero by the claim b). Invoking Lemma 3.7, we have that 

the equation P (x1, . . . , xm) = 0 has a solution in G(σ). �
5. Foundational issues

In the formulation and proof of Theorem 4.3 we used strongly summable ultrafilters for they contain sets 
of sums that behave like strings, a property that is not shared by all ultrafilters. However, the proof of the 
equivalence between (1) and (3) in Theorem 4.3 can be done entirely in ZFC; to this end, we need to find 
additively idempotent ultrafilters that can play the role of strongly summable ultrafilters in the proof of 
Lemma 4.5. The following known fact will enable us to find such ultrafilters:

Lemma 5.1. [11, Lemma 5.11] Consider S to be N or Z. Let (xt)t∈N be a sequence of elements of S. Then, 
there is an idempotent U ∈ βS such that, for every k ∈ N, FS

(
(xt)t≥k

)
∈ U .

Definition 5.2. Giving c1, . . . , cm ∈ Z \ {0}, let P (x1, . . . , xm) =
∑m

i=1 cixi and σ = (a1, . . . , an) ∈ Z<ω

be a reduced string. Define M =
∑n

i=1

(∑m
j=1 |aicj |

)
+ 1. We say that an idempotent ultrafilter U ∈ βZ

is a (σ, P )-ultrafilter if there is a sequence (xt)t∈N in Z such that, for each k ∈ N, FS
(
(xt)t≥k

)
∈ U and 

|xk+1| > M | 
∑k

i=1 xi|.

Lemma 5.1 easily implies the existence of (σ, P )-ultrafilters in ZFC. Using the existence of (σ, P )-
ultrafilters and repeating, mutatis mutandis, the arguments of the proof of the Lemma 4.5, one can settle 
the following analogue of Theorem 4.3 in ZFC:

Theorem 5.3. Let σ ∈ Zω be a reduced string and P (x1, . . . , xm) ∈ Z [x1, . . . , xm] be linear and homogeneous. 
Then, the following are equivalent:

1. for all idempotents U ∈ βZ, σU |= P (x1, . . . , xm) = 0;
2. there exists a (σ, P )-ultrafilter U ∈ βZ such that σU |= P (x1, . . . , xm) = 0;
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3. P has a solution in G(σ).

Let us observe that the conditions defining a (σ, P )-ultrafilter are much weaker than those defining a 
strongly summable ultrafilter, since we are not asking that every A ∈ U must contain the finite sums of 
some sequence, but just that there is one such set with the needed growth condition in U . In fact, a strongly 
summable ultrafilter is automatically a (σ, P )-ultrafilter for all σ ∈ Z<ω, P linear homogeneous polynomial. 
It is unclear (to us) if the converse holds as well:

Question 5.4. Is it provable in ZFC that there exists U ∈ βZ that is a (σ, P )-ultrafilter for all σ ∈ Z<ω

and all linear homogeneous polynomial P? If not, is it true that such an ultrafilter is necessarily a strongly 
summable ultrafilter?

Moreover, we know that if U is an essential ultrafilter, then for any σ ∈ Z<ω σU solves all Rado equations. 
We do not know if this implication can be reversed,9 so we conclude this section with one last question:

Question 5.5. Let U be an additively idempotent ultrafilter of βZ such that for each σ ∈ Z<ω, σU witnesses 
the partition regularity of any Rado equation. Is it true that U must be essential? I.e. among all additively 
idempotent ultrafilters of βZ, is the class of essential idempotent ultrafilters maximal with the respect of the 
property of witnessing the partition regularity of all Rado equations?

6. Examples

6.1. The case σ = (1)

In this subsection, we study which linear homogeneous equations with integers coefficients are witnessed 
by all idempotents U ∈ βZ and hence, by Theorem 2.5, by all possible linear combinations of σU with 
integer coefficients. From Theorem 4.3, one can see that this is equivalent to ask when such equations have 
a solution in G

(
(1)

)
.

Lemma 6.1. Giving c1, . . . , cm ∈ Z \ {0}, the equation c1x1 + · · · + cmxm = 0 has a solution in G
(
(1)

)
if 

and only if for every j ≤ m, there is a non-empty Hj ⊆ {1, . . . , m} \ {j} such that cj +
∑

l∈Hj
cl = 0.

Proof. Let c = (c1, . . . , cm). If the equation has a solution in G
(
(1)

)
, then there is a k×m matrix M = (αij)

coherent with (1) such that McT = 0. This means that, for each j ≤ m there will be a i ≤ k such that 1
appears in the jth position of the vector αi = (αi1, . . . , αim). Define Hj = {l ≤ m | l �= j and αil �= 0}, then 
Hj = {l ≤ m | l �= j and αil = 1}. As cj �= 0 and McT = 0, Hj �= ∅ and cj +

∑
l∈Hj

cl = 0.
Conversely, for each j, l ≤ m, define

αjl =
{

1, if l ∈ Hj ∪ {j}; or
0, otherwise

and let M = (αjl). Note that, for each j ≤ m, αjj = 1; hence M is coherent with (1). Moreover, for each 
j ≤ m, the jth coordinate of McT is 

∑m
l=1 αjlcl = cj +

∑
l∈Hj

cl = 0, which proves that McT = 0. �
Example 6.1. The partition regularity of the equation 4x1 + 2x2 + 3x3 − 5x4 − x5 − 2x6 = 0 is witnessed 
by all idempotent ultrafilters U ∈ βZ, as its coefficients satisfy the condition of Proposition 6.1. The same 

9 We know that there are ultrafilters that are not idempotent with this property, for example any U ∈ K(βZ,�).
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holds for the equation 2x1−2x2 −x3 −x4 = 0. By Lemma 3.7, we have that the equation 4x1 +2x2 +3x3 −
5x4 − x5 − 2x6 = 0 admits injective solutions in G((1)), as

M =

⎛
⎜⎝

1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 0 1 1
0 1 0 0 0 1

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

4
2
3
−5
−1
−2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠

and the columns of M are mutually distinct; however, the equation 2x1 − 2x2 − x3 − x4 = 0 does not 
admit injective solutions in G((1)): in fact, if σ1, σ2, σ3, σ4 ∈ G((1)) are strings of length k such that 
2σ1 − 2σ2 − σ3 − σ4 = 0, for every i ≤ k, we have that σ3,i = 1 if and only if σ4,i = 1 (where σh,i

denotes the i − th entry in the string σh). In fact, it is immediate to see that if σ3,i = 1 then necessarily 
σ1,i = 1, σ2,i = 0, σ4,i = 1, and the same if we let σ4,i = 1. Therefore necessarily σ3 = σ4.

6.2. The case P (x1, x2, x3) = c1x1 + c2x2 + c3x3

A characterisation similar to that of Proposition 6.1 could be given, in principle, for strings of arbitrary 
length, but at the cost of readability. Here we reverse the problem, and we ask for which strings σ =
(a1, . . . , an) can we solve the equation P (x1, x2, x3) = c1x1 + c2x2 + c3x3 = 0 in G(σ). We know that in 
such a case P (x1, x2, x3) must be a Rado polynomial, i.e. some non-empty subset of {c1, c2, c3} sums zero.

We will divide the treatment into two parts: first the case in which c1 + c2 + c3 = 0 and, second, the case 
in which there is a pair inside {c1, c2, c3} that sums to zero.

Case 1: c1 + c2 + c3 = 0. If we allow for constant solutions, trivially this equation will have a solution 
in G(σ) for all possible choices of σ. Therefore we restrict here to study the conditions under which such 
polynomials have an injective solution in G(σ). Without loss of generality, we can assume gcd(c2, c3) = 1.

Observation 6.1. Let σ ∈ Z<ω. Then P has an injective solution in G((σ)) if and only if it has a non-constant 
solution in G((σ)).

To solve our problem we first notice that, without loss of generality, we can restrict to the case σ = (a1, a2). 
In fact, we have the following:

Lemma 6.2. The equation P (x1, x2, x3) = 0 has an injective solution in G(σ) if and only if there is a i < n

such that it has a injective solution in G ((ai, ai+1)).

Proof. Suppose that the equation has a injective solution in G(σ). Then, by Lemma 3.7, there is a matrix 
M whose columns are coherent with σ and all pairwise distinct and satisfies M (c1, . . . , cm)T = 0. Note that, 
since M is coherent with σ and c1+c2+c3 = 0, the first line of M must be (a1, a1, a1); as a consequence, since 
the solution is injective, for at least one index 1 < l ≤ n there is a row L in M which is the first non constant 
where al appears, say L = (h1, h2, h3). Again, the condition c1 + c2 + c3 = 0 forces h1, h2, h3 to be pairwise 
different. This means that the previous line should be either L1 = (al−1, al−1, al−1) or L2 = (al, al, al). If 
the previous line is L1, as M is coherent with σ, L must be a permutation of (0, al, al−1); in this case, let

M1 =
(
al−1 al−1 al−1
h1 h2 h3

)

al al al
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We have that M1 is coherent with (al−1, al) and that M1(c1, c2, c3)T = 0, meaning that P has a solution in 
G (al−1, al). Otherwise, the previous line should be L2 and, for an analogous reason, L must be a permutation 
of (0, al, al+1); in this case, let

M2 =
(

al al al
h1 h2 h3
al+1 al+1 al+1

)

We have that M2 is coherent with (al, al+1) and that M2(c1, c2, c3)T = 0, meaning that P has a solution 
in G (al, al+1). In both cases, the columns of the matrices are non-constant which, by Observation 6.1, 
guarantees the presence of an injective solution.

Conversely, if the equation has a injective solution in G ((ai, ai+1)), for some i < n, then there are distinct 
h1, h2, h3 ∈ {0, ai, ai+1} such that P (h1, h2, h3) = 0. For each j ≤ 3, let σj = (a1, . . . , ai, hj , ai+1, . . . , an). 
Then, each σj is coherent with σ and P (σ1, σ2, σ3) = 0. By Lemma 3.7, the equation has a solution in 
G(σ). �

The set of solutions of the equation P (x1, x2, x3) = 0 is a linear space generated by the vectors (1, 1, 1)
and (0, c3,−c2), so all solutions of the equation have the form

x1 = t, x2 = t + c3u and x3 = t− c2u

for some t, u ∈ Z. This simple observation allows to easily deduce the following:

Lemma 6.3. If c1 + c2 + c3 = 0 and gcd (c1, c2, c3) = gcd (a1, a2) = 1, the equation P (x1, x2, x3) = 0 has an 
injective solution in G ((a1, a2)) if and only if there are 1 ≤ i, j ≤ 3 such that a permutation of (a1, a2) is 
equal to (ci,−cj).

Proof. There is an injective solution in G ((a1, a2)) if and only if there are t, u ∈ Z such that (t, t +c3u, t −c2u)
is a permutation of (0, a1, a2). Now we just have to check the possible cases.

If t − c2u = 0, then either a1 = t = c2u and a2 = t + c3u = (c2 + c3)u or (analogously) a1 = (c2 + c3)u
and a2 = c2u; in both cases, as gcd(a1, a2) = 1, we have u = 1; from the fact that c1 + c2 + c3 = 0, we have 
in the first case a1 = c2 and a2 = −c1, and in the second case a1 = −c1 and a2 = c2. The cases t + c3u = 0
or t = 0 are analogous. �

Putting together Lemmas 6.2 and 6.3, and observing by linearity that c1x1 + c2x2 + c3x3 = 0 is solvable 
in G (σ) if and only if kc1x1 + kc2x2 + kc3x3 = 0 is solvable in G (hσ) for some h, k ∈ Z \ {0}, we deduce 
the general characterisation.

Proposition 6.4. If c1 + c2 + c3 = 0 and σ = (a1, . . . , an) ∈ Z<ω, the equation P (x1, x2, x3) = 0 has an 
injective solution in G(σ) if and only if there are 1 ≤ i, j ≤ 3, h ≤ n − 1 and r, s ∈ Z \ {0} such that 
r (ah, ah+1) = s (ci,−cj).

Example 6.2. Let P (x1, x2, x3) = 3x1−5x2+2x3 and consider σ = (5, 7, −10, −6, 13). Then P (x1, x2, x3) = 0
has an injective solution in G(σ), because (−10, −6) is multiple of (−5, −3).

Case 2: Let us suppose now that there is a pair among c1, c2 and c3 that sums zero; without loss of 
generality, we can consider c1 = −c2 = c, c3 = d and gcd(c, d) = 1, namely P (x1, x2, x3) = c (x1 − x2)+dx3. 
We shall show that the only equation satisfying the mentioned conditions solvable in G(σ), for some σ ∈ Z<ω, 
is Schur’s equation x1 − x2 + x3 = 0.
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Proposition 6.5. Consider the polynomial P (x1, x2, x3) = c (x1 − x2) + dx3, with c, d ∈ Z \ {0} and 
gcd(c, d) = 1. The following facts are equivalent:

1. there is a non-empty reduced string σ = (a1, . . . , an) such that σU |= P (x1, x2, x3) = 0 for all additively 
idempotent ultrafilters U ∈ βZ;

2. σU |= P (x1, x2, x3) = 0 for all additively idempotent ultrafilters U ∈ βZ and for all non empty reduced 
strings σ ∈ Z<ω;

3. |c| = |d| = 1, i.e. P (x1, x2, x3) is Schur’s polynomial x1 + x2 − x3.

Proof. The implication (3) ⇒ (2) is a consequence of Theorem 2.5 and the fact that any member of an 
additively idempotent ultrafilter on Z is an IP-set; the implication (2) ⇒ (1) is trivial.

To conclude, let us show that (1) ⇒ (3). Let σ = (a1, . . . , an), where we assume without loss of generality 
that gcd(a1, . . . , an) = 1, and assume that the equation P (x1, x2, x3) = 0 has a solution in G(σ). First, 
let us show that it must be that |c| = 1. In fact, let M be a k × 3, coherent matrix with σ, such that 
M(c, −c, d) = 0; as each ai has to appear in the third column of M , we always find ui, vi ∈ {0, a1, . . . , an}
such that

c (ui − vi) = dai (6.1)

As gcd(c, d) = 1, the equation (6.1) shows that, for each i ≤ n, c divides ai. As we assumed 
gcd (a1, . . . , an) = 1, this forces |c| = 1.

Now we prove that |d| ≥ 3 cannot occur. Indeed, suppose that |d| ≥ 3 and consider a = max{|ai| | i ≤ n}. 
Let i0 := min{i ≤ n | |ai| = a}. By changing σ with −σ, if necessary, we can assume without loss of 
generality that ai0 = a. By looking at the appearance of ai0 in the third column of M , one can find 
u0, v0 ∈ {0, a1, . . . , an} such that u0 − v0 + dai0 = 0. Hence, we have that |u0 − v0| = |da|, which is absurd, 
since |u0 − v0| ≤ 2a.

Finally, let us prove that |d| cannot be 2. Let us proceed by contradiction; by multiplying P (x1, x2, x3) by 
−1, if needed, we can assume that d = 2. The idea is to show that, in the string σ = (a1, . . . , an), whenever 
a appears with index i ≤ n, then −a must appear with an index j > i; and, analogously, whenever −a

appear with an index j′, then a must appear with an index i′ > j′. Of course this cannot happen, as it 
would generate an infinite substring (a, −a, a, −a, . . . ) of the finite string σ. To construct this substring, we 
proceed by recursion on the indices of σ. Let again a = max{|ai| | i ≤ n} and i0 = min{i ≤ n | |ai| = a}.

As before, we may assume that ai0 = a. Then, there are u0, v0 ∈ {0, a1, . . . , an} such that (u0, v0, a) is a 
line of M , say with index k0 ≤ k, which implies that u0 − v0 = 2a. Hence, by the maximality of a, it must 
be u0 = a and v0 = −a. As v0 �= 0 and by the minimality of i0,

I0 = {i ≤ n | i > i0 and ai = −a} �= ∅.

Let i1 = min I0 and, by minimality of i0, observe that ai0 cannot appear in the second column of any line 
of M whose index is greater than k0.

Now assume that, for a r ≤ n, we have defined two increasing lists, namely i0, . . . , ir ∈ {1, . . . , n} and 
k0, . . . , kr ∈ {1, . . . , k}, indexing the components of σ and the lines of the matrix M , respectively, in such a 
way that

1. for each j ∈ {0, . . . , r}, aij = (−1)ja;
2. for each j ∈ {0, . . . , r}, aij appears in the third column of M at the line kj ; and
3. fixing j, l ∈ {0, . . . , r} such that l ≤ j, ail do not appear in the second column of any line greater than 

or equal to kj .
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Thus, there must be ur, vr ∈ {0, a1, . . . , an} such that the kr-th line of M is (ur, vr, air), which means 
that ur − vr = 2air , which can only happen if ur = air and vr = −air . By the item (3) above, we see that

Ir = {i ≤ n | i > ir and ai = −air} �= ∅.

Define ir+1 = min Ir and let kr+1 be the line of M where air+1 appears in the third column. Then, the 
lists i0, . . . , ir+1 and k0, . . . , kr+1 must be increasing and also satisfy conditions (1), (2) and (3) above. This 
shows that if d = 2, there is an infinite substring (a, −a, a, −a, . . . ) of the finite string σ, which is absurd. �

Notice that, as a straight consequence of Proposition 6.5, we get the existence of plenty of Rado equations 
that are not solvable in G(σ), for all σ ∈ Z<ω. Precisely:

Corollary 6.6. Let c, d ∈ Z \ {0} such that gcd(c, d) = 1. Then, the following are equivalent:

1. there exists a σ ∈ Z<ω such that, for all additively idempotent ultrafilter U ∈ βZ, σU |= c(x −y) +dz = 0; 
and

2. c=d=1.
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