In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.

Hybridization of the virtual element method for linear elasticity problems / F. Dassi, C. Lovadina, M. Visinoni. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 31:14(2021 Dec 30), pp. 2979-3008. [10.1142/S0218202521500676]

Hybridization of the virtual element method for linear elasticity problems

C. Lovadina
Secondo
;
M. Visinoni
Ultimo
2021

Abstract

In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.
elasticity problems; hybridization; Virtual element methods
Settore MAT/08 - Analisi Numerica
   Virtual Element Methods: Analysis and Applications
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   201744KLJL_005
30-dic-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
2103.01164.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
s0218202521500676.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 834.25 kB
Formato Adobe PDF
834.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/904686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact