In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.
Hybridization of the virtual element method for linear elasticity problems / F. Dassi, C. Lovadina, M. Visinoni. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 31:14(2021 Dec 30), pp. 2979-3008. [10.1142/S0218202521500676]
Hybridization of the virtual element method for linear elasticity problems
C. Lovadina
Secondo
;M. VisinoniUltimo
2021
Abstract
In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.File | Dimensione | Formato | |
---|---|---|---|
2103.01164.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
s0218202521500676.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
834.25 kB
Formato
Adobe PDF
|
834.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.