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Abstract

We extend the hybridization procedure proposed in Ref. 1 to the Virtual Element Method
for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such

a technique, we focus on the 2D case, but other methods and 3D problems can be consid-

ered as well. We also show how to design a better approximation of the displacement field
using a straightforward post-processing procedure. The numerical experiments confirm

the theory for both two and three-dimensional problems.
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1. Introduction

The Virtual Element Method (VEM) is a generalization of the Finite Element

Method (FEM), which allows to deal with general polytopal meshes, also including

non-convex or distorted elements, as well as hanging nodes, see Refs. 12, 14. The

fundamental idea of this technology is hidden behind the definition of the approx-

imation spaces: VEM spaces contain suitable polynomials as FEM, but also some
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other functions, that are solutions of a local PDE. Thereby, we do not know the

discrete functions pointwise, but we know them only by means of a limited set of

information, i.e., the degrees of freedom. Nevertheless, the available information is

sufficient to construct the stiffness matrix and the right-hand side to set up and

solve the discrete scheme.

In Structural Mechanics and elasticity fields the flexibility in handling general

polygonal and polyhedral meshes ensures an high success of VEM in such com-

munities. Here we mention, as a representative non-exhaustive sample, a brief list

of papers in the framework of structural mechanics problems: Refs. 5, 6, 4, 9, 13,

15, 24, 33, 22, 44, 32, 34, 45. Some examples of other numerical methods for the

elasticity problem that can handle polytopal meshes are Refs. 18, 25, 26, 30.

In this paper we focus on the numerical approximation of the elasticity problem,

using the Hellinger-Reissner variational formulation (see Ref. 17, for example), and

in particular we consider the so-called hybridization procedure. The idea behind

the hybridization strategy dates back to 1965, see Ref. 29, and it has been used as

an implementation technique (for FEM) to solve 2nd order differential problems in

mixed form (see Ref. 17, for instance). Essentially, this procedure consists in using

Lagrange multipliers to impose the required continuity constraints across the inter-

elements, rather than enforcing them directly in the approximation spaces. Then,

a static condensation technique is employed to obtain a symmetric and positive

definite linear system. Consequently, the resolution of a large indefinite linear system

is replaced by the resolution of a lower dimensional positive definite one. Other than

such an advantage, a suitable post-processing procedure of the discrete solution and

the Lagrange multipliers leads to an improved approximation of the displacement

variable, see Ref. 1.

We here present and analyse the hybridization technique applied to Hellinger-

Reissner conforming VEMs. In contrast to FEMs, the flexibility of VEMs allows us

to design cheap and conforming schemes with a-priori symmetric Cauchy stresses

both in 2D and 3D, see Refs.7, 8 and 28. One interesting aspect of the proposed

VEM scheme is that it does not exploit point values at the mesh vertices, so the

hybridization procedure becomes more straightforward. However, we wish to recall

that several Hellinger-Reissner FEM schemes have been proposed: as a few exam-

ples, we cite the conforming one presented in Ref. 3, the one based on composite

elements studied in Ref. 35, the one based on the symmetry reduction detailed in

Ref. 2, and the one based on the recent interesting approach analysed in Ref. 40,

39.

A brief outline of the paper is as follows. In Sec. 2 we present the continuous elas-

ticity problem. Sec. 3 introduces the hybridization technique with its computational

aspects. The 2D low-order VEM scheme studied in Ref. 7 has been selected to illus-

trate the procedure. In Sec. 4 an error analysis is developed for the above-mentioned

method, both recalling known results, and proving new estimates regarding the La-

grange multipliers. In Sec. 5 we propose and study a post-processed displacement

solution which exploits the information provided by the computed Lagrange multi-
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pliers. We highlight that in several points our analysis follows the guidelines detailed

in Ref. 1 for the laplacian problem in mixed form. However, the VEM approach here

requires peculiar technical tools which often differ from the typical ones of FEMs.

In Sec. 6 we present some experiments to give numerical evidence of the proposed

VEM approach for both two and three dimensional problems. In the last section we

draw some conclusions.

Space notation. In this paper we will use the standard notation regarding Sobolev

spaces, norms and seminorms, see for instance Ref. 36. Given two quantities a and

b, we write a . b when there exists a constant C, independent of the mesh size

(but possibly dependent on the regularity of the continuous elastic problem), such

that a ≤ Cb. Moreover, given any subset A ⊂ Rd and an integer k ≥ 0, we denote

by Pk(A) the space of polynomials up to degree k, defined on A; whereas, given

a functional space X, we indicate with [X]
d×d
s the d × d symmetric tensor whose

components belong to the space X.

Mesh notation. Given a polygon E with nEe edges, we denote its area, diameter

and barycenter by |E|, hE and xE . Moreover, we denote by |e| and xe the length

and the middle point of an edge e, respectively.

2. The Hellinger-Reissner elasticity problem

In the present section, we introduce the elasticity problem which ensues from the

Hellinger-Reissner principle, see Refs. 17, 19. Let Ω be a polytopal domain in Rd,

d = 2, 3 and we consider the following elasticity problem:
Find (σσσ,u) such that

− div σσσ = f in Ω

σσσ = Cεεε(u) in Ω

u = g in ∂Ω

, (2.1)

where σσσ and u represent the stress and the displacement field, respectively. In

addition, f is a function in
[
L2(Ω)

]d
which represents the loading term and g ∈[

H1/2(∂Ω)
]d

is the displacement on boundary. Furthermore, we assume that the

elasticity fourth-order symmetric tensor C is uniformly-bounded, positive-definite

and sufficiently smooth. To set the variational formulation of Problem (2.1), we

define the spaces

U :=
[
L2(Ω)

]d
, Σ := {τττ ∈ H(div; Ω) : τττ is symmetric} (2.2)

with standard norms. As usual, H(div; Ω) is the space of tensor in
[
L2(Ω)

]d×d
whose divergence is the vector-valued operator in

[
L2(Ω)

]d
.

We define the bilinear forms a(·, ·) : Σ× Σ→ R and b(·, ·) : Σ× U → R as

a(σσσ, τττ ) :=

∫
Ω

Dσσσ : τττ dΩ, b(σσσ,u) :=

∫
Ω

div σσσ · u dΩ, (2.3)
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where D := C−1 is the inverse of the Cauchy tensor. Then the mixed weak formu-

lation of Problem (2.1) reads
Find (σσσ,u) ∈ Σ× U such that

a(σσσ, τττ ) + b(τττ ,u) =< g, τττ n > ∀τττ ∈ Σ

b(σσσ,v) = −(f ,v) ∀v ∈ U
, (2.4)

where (·, ·) is the inner product in
[
L2(Ω)

]d
, whereas < ·, · > is the duality product

between
[
H1/2(∂Ω)

]d
and

[
H−1/2(∂Ω)

]d
. It is well-known that Problem (2.4) is

well posed, see for instance Ref. 17.

3. Hybridization procedure

In this section we present the hybridization technique for the mixed approximation

of Problem (2.4), cf. Ref. 29. First of all, we recall a typical discrete formulation of

Problem (2.4):
Find (σσσh,uh) ∈ Σh × Uh such that

ah(σσσh, τττh) + bh(τττh,uh) =< g, τττh n >h ∀τττh ∈ Σh

bh(σσσh,vh) = −(f ,vh)h ∀vh ∈ Uh,

(3.1)

where Σh and Uh are the global discrete spaces for the stress and displacement field,

respectively. Moreover, ah(·, ·), bh(·, ·), < g, · >h and (f , ·)h are suitable approxi-

mations of the corresponding bilinear and linear forms. More details about possible

choices of the spaces for a conforming low-order VEM can be found in Refs. 7, 28.

The linear system associated with (3.1) has the following form(
A B

BT 0

)(
σσσh

uh

)
=

(
G

F

)
(3.2)

whose matrix is indefinite. The hybridization procedure is an implementation tech-

nique which leads to solve a linear system with a symmetric and positive definite

matrix instead of the original indefinite one (3.2). The procedure is split into two

different steps: the imposition of the stress H(div)-conformity requirement through

the introduction of suitable Lagrange multipliers, and the static condensation algo-

rithm.

Remark 3.1. It is worth noticing that the possibility to perform hybridization

highly depends on the particular features of the discrete scheme, and it is not always

possible. With this respect, the structure of the discrete space Σh is essential.

In what follows, we illustrate the hybridization procedure using the 2D VEM

scheme presented in Ref. 7. Accordingly, we recall the approximation spaces and

the bilinear and linear forms involved in the method. Such quantities are, as usual,

defined locally on each element. Afterwards, all the contributions are glued together

to form the discrete problem. Such procedure can be extended to the 3D case when
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using the scheme proposed in Ref. 28 (in fact numerical results for such an instance

are presented in Sec. 6).

3.1. A low-order VEM scheme

Let {Th}h be a sequence of decompositions of Ω into general polygons E and set

h := supE∈Th hE . We denote by Eh the set of the edges of Th, while EIh and EBh are

the set of internal and boundary edges of the skeleton Eh, respectively. For all h, we

say that {Th}h is a regular polygonal decomposition if the following assumptions

are satisfied:

• (A1) for every edge e ∈ ∂E we have: he ≥ γ hE ,

• (A2) E is star-shaped with respect to a ball of radius ≥ γ hE ,

where γ is positive constant. The hypotheses above, and in particular (A2), may

be relaxed, see Refs. 16, 21, 23. Moreover, we assume that the material tensor D is

piecewise constant with respect to the decomposition Th. This regularity is enough

for our low-order method, cf. Ref. 7.

To describe the local spaces employed in our hybrid VEM scheme, we need to

introduce these two elementary (for our scheme) spaces: RM(E) and R(e).

Space RM(E). It is the space of local infinitesimal rigid body motions:

RM(E) :=
{
r(x) = ααα + β

(
x− xE

)⊥
s.t. ααα ∈ R2 and β ∈ R

}
, (3.3)

where if c = (c1, c2)T is a generic vector in R2, we denote by c⊥ = (c2,−c1)T its

counterclockwise rotation. The dimension of RM(E) is 3.

Space R(e). For each edge e ∈ ∂E, we introduce

R(e) = {ψψψ(s) = c te + p1(s)ne c ∈ R, p1(s) ∈ P1(e)} (3.4)

where ne is the outward normal to the edge e, and te is the tangent vector to the

edge e, in accordance with its direction. The dimension of such space is 3.

Stress space. Starting from RM(E) and R(e) we can define our local approxima-

tion space for the stress field:

Σh(E) = {τττh | τττh ∈ H(div;E) : ∃w∗ ∈
[
H1(E)

]2
such that τττh = Cεεε(w∗);

(τττh n)|e ∈ R(e) ∀e ∈ ∂E;

div τττh ∈ RM(E)}.
(3.5)

It is easy to see, cf. Ref. 7, that div τττh ∈ RM(E) is completely determined by the

(τττh n)|e’s. Therefore, see Fig. 1, we infer that the dimension of this space is 3nEe .
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Fig. 1. Schematic description of the local degrees of freedom: stresses (left); displacements (right).

Displacement space. The local approximation space for the displacement field is

defined by, see (3.3)

Uh(E) =
{
vh ∈

[
L2(E)

]2
: vh ∈ RM(E)

}
. (3.6)

It follows, see Fig. 1, that dim(Uh(E)) = 3. We now introduce the local bilinear

and linear forms involved in the method.

The local bilinear form bE(·, ·). Given an element E ∈ Th, we notice that, for

every τττh ∈ Σh(E) and vh ∈ Uh(E), the term

bE(τττh,vh) =

∫
E

div τττh · vh dE (3.7)

is computable thanks to the local degrees of freedom. Therefore, there is not need

to introduce any approximation of the global term b(τττ ,v) (hence bh(·, ·) = b(·, ·)).

The local bilinear form aE(·, ·). The local bilinear form

aE(σσσh, τττh) =

∫
E

Dσσσh : τττh dE (3.8)

is not computable for a general couple (σσσh, τττh) ∈ Σh(E)×Σh(E). We proceed as in

the standard VEM setting. We define a suitable projection operator onto the local

polynomial functions. We introduce

ΠE : Σh(E)→ [P0(E)]
2×2
s

as follows

aE(ΠEτττh, πππ0) = aE(τττh, πππ0) ∀πππ0 ∈ [P0(E)]
2×2
s . (3.9)

Therefore, ΠE is a projection operator onto the constant symmetric tensor functions

and it is computable from the degrees of freedom. Indeed, using the divergence

theorem and the fact that each πππ0 ∈ [P0(E)]
2×2
s can be written as πππ0 = Cεεε(p1),
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with p1 ∈ [P1(E)]
2
, we rewrite the right-hand side of (3.9) as

aE(τττh, πππ0) =

∫
E

Dτττh : πππ0 dE

=

∫
E

Dτττh : Cεεε(p1) dE =

∫
E

τττh : εεε(p1) dE

= −
∫
E

div τττh · p1 dE +

∫
∂E

(τττh n) · p1 ds

(3.10)

which is clearly computable. Then, the approximation of aE(·, ·) reads:

ahE(σσσh, τττh) := aE(ΠE σσσh,ΠEτττh) + sE ((I −ΠE)σσσh, (I −ΠE)τττh)

=

∫
E

D(ΠEσσσh) : (ΠEτττh) dE + sE ((I −ΠE)σσσh, (I −ΠE)τττh) ,
(3.11)

where sE(·, ·) is a symmetric and positive definite bilinear form. We propose the

following choice:

sE(σσσh, τττh) := κE hE

∫
∂E

σσσh n · τττh n ds, (3.12)

where κE is a positive constant to be chosen according to D. For instance, in the

numerical examples of Sec. 6, κE is set equal to 1
2 tr(D|E). Other choice of (3.12)

can be found in 7.

The loading terms. Let us start with the body loading term. This term can be

split on each element as follows

(f ,vh) =

∫
Ω

f · vh dΩ =
∑
E∈Th

∫
E

f · vh dE (3.13)

and since vh ∈ RM(E), it is computable via quadrature rules for polygonal do-

mains. Similarly, the boundary term, for a sufficiently regular function g, can be

split on each edge e ∈ EBh as follows

< g, τττh n >=

∫
∂Ω

g · τττh n ds =
∑
e∈EBh

∫
e

g · τττh ne ds. (3.14)

Since τττh ∈ Σh(E) and in particular τττh ne is a polynomial function, this term is

computable.

Discrete problem. With all the above ingredients the discretization of Problem

(2.4) can be defined. As for standard VEM and FEM schemes, the global spaces

are built by gluing local ones and the global forms are obtained summing all the

local ones. Thus, we set

Σh =
{
τττh ∈ Σ : τττh|E ∈ Σh(E) ∀E ∈ Th

}
(3.15)

and
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Uh =
{
vh ∈

[
L2(Ω)

]2
: vh|E ∈ Uh(E) ∀E ∈ Th

}
. (3.16)

Then the discrete scheme reads:
Find (σσσh,uh) ∈ Σh × Uh such that

ah(σσσh, τττh) + b(τττh,uh) =< g, τττh n > ∀τττh ∈ Σh

b(σσσh,vh) = −(f ,vh) ∀vh ∈ Uh.

(3.17)

3.2. Imposing H(div)-conformity via Lagrange multiplier

We first note that the space (3.15) can be considered as a subspace of the following:

Σ̃h(Th) =
{
τττh ∈

[
L2(Ω)

]2×2
: τττh|E ∈ Σh(E) ∀E ∈ Th

}
. (3.18)

Indeed, we have: Σh = Σ̃h(Th) ∩ H(div,Ω). However, one could try to impose

the conformity Σh ⊆ H(div; Ω) using Lagrange multipliers, instead of forcing the

regularity directly in the subspace definition. In this VEM setting we proceed as

follows.

Given EIh, the set of the internal edges of Th, we define the space of the Lagrange

multipliers by (cf. (3.4)):

Λh(EIh) :=
{
µµµh ∈

[
L2(EIh)

]2
: µµµh|e ∈ R(e) ∀ e ∈ EIh

}
, (3.19)

where, with a little abuse of notation, we denote with L2(EIh) the L2 space defined on

the interior skeleton of Th, i.e., the union of e ∈ EIh. We observe that the Lagrange

multipliers are defined only on the internal edges EIh because their role will be

to match the normal stresses insisting on interior interfaces, see Fig. 2. Indeed a

tensor field τττ is H(div)-regular if its normal component τττ n does not jump across

any interface inside Ω. To force such a continuity we consider the bilinear form

Fig. 2. Overview of the degrees of freedom. The degrees of freedom are denoted as follows: square

for displacement, arrow for stress and cross for Lagrange multiplier. Dark colors are referred to
the left element, while light ones to the right.
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ch(·, ·) : Σ̃h(Th)× Λh(EIh)→ R (3.20)

defined as:

ch(τττh, µµµh) := −
∑
E∈Th

∫
∂EI

µµµh · τττh n ds ∀τττh ∈ Σ̃h(Th), ∀µµµh ∈ Λh(EIh), (3.21)

where ∂EI = ∂E ∩ EIh. We observe that although τττh is virtual, such bilinear form

is computable. Indeed, we are integrating over edges where both µµµh and τττh n are

polynomials. We are now ready to set the hybrid version of Problem (3.17):
Find (σσσh,uh, λλλh) ∈ Σ̃h(Th)× Uh × Λh(EIh) such that

ah(σσσh, τττh) + b(τττh,uh) + ch(τττh, λλλh) =< g, τττh n > ∀τττh ∈ Σ̃h(Th),

b(σσσh,vh) = −(f ,vh) ∀v ∈ Uh,

ch(σσσh, µµµh) = 0 ∀µµµh ∈ Λh(EIh).

(3.22)

It is easy to prove that the two discrete Problems (3.17) and (3.22) are equivalent. In

this particular case, equilavence means that if (σσσh,uh, λλλh) ∈ Σ̃h(Th)×Uh×Λh(EIh)

solves Problem (3.22), then (σσσh,uh) ∈ Σh × Uh and is the solution of Problem

(3.17). Moreover if (σσσh,uh) ∈ Σh×Uh is the solution of Problem (3.17), then there

is a unique λλλh ∈ Λh(EIh) such that (σσσh,uh, λλλh) is the solution of Problem (3.22).

3.3. Static condensation of stresses and displacements

The matrix form of Problem (3.22) can be written as

 Ã B̃ C̃

B̃T O O

C̃T O O

σσσh

uh

λλλh

 =

G̃F̃
O

 (3.23)

where the symbol ∼ here highlights that the quantity under consideration refers to

the (discontinuous) space (3.18), rather than the conforming one (3.15). Moreover,

we remark that the third equation

C̃T σσσh = O (3.24)

represents the traction continuity for the stress field by means of the multipliers.

We observe that one of the advantages of having discontinuous stress degrees of

freedom is that the matrices Ã and B̃, corresponding to the discrete bilinear form

ah(·, ·) and the mixed term b(·, ·) are block matrices. Each block corresponds to the

information of a single element in our discretization. Hence, the matrix Ã is a block

diagonal matrix, whose inverse can be found in a fast and cheap way. Then we can

compute σσσh via:

σσσh = Ã−1(G̃− B̃uh − C̃λλλh). (3.25)
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Subtracting (3.25) into the second and third equations of (3.23) we have(
B̃T Ã−1B̃ B̃T Ã−1C̃

C̃T Ã−1B̃ C̃T Ã−1C̃

)(
uh

λλλh

)
=

(
B̃T Ã−1G̃− F̃
C̃T Ã−1G̃

)
(3.26)

which is symmetric and positive definite.

Now, recalling again that Ã and B̃ are block matrices, we have that B̃T Ã−1B̃ is a

block diagonal matrix, too. As before, it can be inverted in a straightforward way

and we get

uh = (B̃T Ã−1B̃)−1
[
(B̃T Ã−1C̃)λλλh + B̃T Ã−1G̃− F̃

]
. (3.27)

Now, substituting uh in the third equation, our system has the following form

Hλλλh = R (3.28)

where

H = (−C̃T Ã−1B̃)(B̃T Ã−1B̃)−1(B̃T Ã−1C̃)− C̃T Ã−1C̃ (3.29)

and

R = −C̃T Ã−1G̃+ (CT Ã−1B̃)(B̃T Ã−1B̃)−1(B̃T Ã−1G̃− F̃ ). (3.30)

The matrix H is symmetric and positive definite. This is an advantage from a com-

putational viewpoint. Indeed, one can use an “ad-hoc” procedure to solve (3.28), for

instance Cholesky decomposition. Once we have λλλh, the displacement and then the

stress vectors can be obtained explicitly via matrix-vector multiplication, see (3.27)

and (3.25).

Remark 3.2. The Lagrange multiplier field has the physical interpretation of (gen-

eralized) displacements. As we will see in Sec. 5, we will use it to design a higher-

order (non-conforming) approximation of the displacement field.

4. Error analysis

Since the hybridization technique of Sec. 3 can be seen as a computational way

to solve the original linear system stemming from the discrete problem (3.17)

(cf. (3.2)), the error estimates developed in Ref. 7 hold also for the stress and

displacement solutions of the equivalent problem (3.22). In particular, the following

result holds true.

Theorem 4.1. Let (σσσ,u) ∈ Σ × U be the solution of Problem (2.4), and let

(σσσh,uh) ∈ Σ̃h(Th) × Uh be the discrete stress and displacement solution of Prob-

lem (3.22). Under assumptions (A1) and (A2) on the mesh, and supposing (σσσ,u)

sufficiently regular, the following estimate holds true:

||σσσ − σσσh||Σ + ||u− uh||U . h. (4.1)
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It remains to study the convergence to u of the Lagrange multipliers λλλh (we

recall that the multipliers are physically a displacement field). It is useful to recall,

see Ref. 7, that there exist an interpolation operator

Ih : W r(Ω)→ Σh

where

W r(Ω) :=
{
τττ : τττ ∈ [Lr(Ω)]

2×2
s s.t. div τττ ∈

[
L2(Ω)

]2}
. (4.2)

Such an operator is obtained by glueing the local contributions. We define the local

interpolator IE : W r(E)→ Σh(E) as∫
∂E

(IE τττ )n · ϕϕϕ∗ ds =

∫
∂E

τττ n · ϕϕϕ∗ ds ∀ϕϕϕh ∈ R∗(∂E), (4.3)

where

R∗(∂E) :=
{
ϕϕϕ∗ ∈

[
L2(∂E)

]2
: (ϕϕϕ∗)|e =γγγe + δe(x− xE)⊥

γγγe ∈ R2, δe ∈ R, ∀e ∈ ∂E
}
.

The operator Ih satisfies the following commuting diagram property:

div(Ihτττ ) = ΠRM (div τττ ) ∀τττ ∈W r(Ω), (4.4)

where ΠRM denotes the L2-projection onto the space of the rigid body motions.

Furthermore, the following error estimates hold true.

Proposition 4.2. Under the standard mesh assumptions (A1) and (A2), for the

interpolation operator IE defined in (4.3) and for each τττ sufficiently regular we have{
||τττ − IEτττ ||0,E . hE |τττ |1,E
||div(τττ − IEτττ )||0,E . hE |div τττ |1,E .

(4.5)

4.1. A superconvergence result

Henceforth, we will suppose Ω to be a convex polyogn (or a domain sufficiently

regular for the application of the shift theorem); moreover, in Problem (2.1) we

consider g = 0. Our aim is to prove that the L2-projection of u onto the rigid body

motion,

ūh = ΠRMu, (4.6)

superconverges to u.

Theorem 4.3. Let (σσσ,u) ∈ Σ × U be the solution of Problem (2.1), and let

(σσσh,uh) ∈ Σh × Uh be the solution of the discrete Problem (3.17). Then, assuming

that the solution is sufficiently regular and that the mesh assumptions (A1) and

(A2) are satisfied, the following estimate holds true:

||ūh − uh||0 . h2. (4.7)
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Proof. Let ϕϕϕ ∈
[
H2(Ω)

]2 ∩ [H1
0 (Ω)

]2
be the solution of the linear elasticity prob-

lem: {
div(Cεεε(ϕϕϕ)) = ūh − uh in Ω

ϕϕϕ = 0 on ∂Ω.
(4.8)

Due to standard regularity results (Ω is supposed to be convex), we have

||ϕϕϕ||2 . ||ūh − uh||0. (4.9)

Set ξξξ = Cεεε(ϕϕϕ), and let Ih ξξξ be the interpolation of ξξξ defined in (4.3). Using (4.4),

(4.8) and recalling that (ūh − uh)|E ∈ RM(E), we get

div(Ih ξξξ) := ΠRM (div ξξξ) = ΠRM (ūh − uh) = ūh − uh. (4.10)

Therefore, using (4.6) and the definition of the L2-projection on rigid body motion,

we have

||ūh − uh||20 =

∫
Ω

(ūh − uh) · (ūh − uh) dΩ =

∫
Ω

div(Ih ξξξ) · (ūh − uh) dΩ

=

∫
Ω

div(Ih ξξξ) · (u− uh) dΩ.

(4.11)

From (2.1), (3.17) and (4.11) we infer

||ūh − uh||20 =

∫
Ω

div(Ih ξξξ) · (u− uh) dΩ = ah(σσσh, Ihξξξ)− a(σσσ, Ihξξξ). (4.12)

Now, employing the definition of the projection operator ΠE (cf. (3.9)), we get

ah(σσσh, Ihξξξ)− a(σσσ, Ihξξξ)

=
∑
E∈Th

[
ahE(σσσh, IEξξξ)− aE(σσσ, IEξξξ)

]
=
∑
E∈Th

[aE(ΠEσσσh,ΠE(IEξξξ))− aE(σσσ, IEξξξ) + sE ((I −ΠE)σσσh, (I −ΠE)IEξξξ)]

=
∑
E∈Th

[aE (ΠEσσσh, IEξξξ)− aE(σσσ, IEξξξ) + sE ((I −ΠE)σσσh, (I −ΠE)IEξξξ)]

=
∑
E∈Th

[aE ((ΠE − I)σσσh, IEξξξ) + aE(σσσh − σσσ, IEξξξ) + sE ((I −ΠE)σσσh, (I −ΠE)IEξξξ)]

= T1 + T2 + T3.
(4.13)

We bound the three terms T1, T2 and T3 in (4.13) separately.



13

To estimate the term T1, we first write:

T1 : =
∑
E∈Th

aE ((ΠE − I)σσσh, IEξξξ)

=
∑
E∈Th

[aE ((ΠE − I)(σσσh − σσσ), IEξξξ) + aE ((ΠE − I)σσσ, IEξξξ)]

=
∑
E∈Th

aE ((ΠE − I)(σσσh − σσσ), IEξξξ − ξξξ) +
∑
E∈Th

aE ((ΠE − I)σσσ, IEξξξ − ξξξ)

+
∑
E∈Th

aE ((ΠE − I)(σσσh − σσσ), ξξξ −ΠEξξξ) +
∑
E∈Th

aE ((ΠE − I)σσσ, ξξξ −ΠEξξξ) .

(4.14)

Now, by employing the continuity of aE(·, ·), standard polynomial approximation

results, Proposition 4.2 and estimate (4.1), we have

T1 . (||σσσh − σσσ||0 + ||σσσ −Πhσσσ||0) (||Ihξξξ − ξξξ||0 + ||ξξξ −Πhξξξ||0)

. h (||Ihξξξ − ξξξ||0 + ||ξξξ −Πhξξξ||0) . h2|ξξξ|1

. h2||ϕϕϕ||2,
(4.15)

where Πh is the operator that locally coincides with ΠE , for every E ∈ Th.

To estimate the term T2, we recall that ξξξ := Cεεε(ϕϕϕ) to write

T2 := a(σσσh − σσσ, Ihξξξ) =

∫
Ω

D (σσσh − σσσ) : Ihξξξ dΩ

=

∫
Ω

D (σσσh − σσσ) : (Ihξξξ − ξξξ) dΩ +

∫
Ω

D (σσσh − σσσ) : ξξξ dΩ

=

∫
Ω

D (σσσh − σσσ) : (Ihξξξ − ξξξ) dΩ +

∫
Ω

D (σσσh − σσσ) : Cε(ϕϕϕ) dΩ

=

∫
Ω

D (σσσh − σσσ) : (Ihξξξ − ξξξ) dΩ−
∫

Ω

div (σσσh − σσσ) · ϕϕϕ dΩ,

where an integration by parts has been used in the last step. Now, we recall

(see (4.4)) that

(div(σσσh − σσσ),qh) = 0, ∀qh ∈ Uh.

Hence, taking qh = ϕ̄ϕϕh := ΠRMϕϕϕ, we obtain

T2 =

∫
Ω

D (σσσh − σσσ) : (Ihξξξ − ξξξ) dΩ−
∫

Ω

div (σσσh − σσσ) · (ϕϕϕ − ϕ̄ϕϕh) dΩ. (4.16)

Employing Proposition 4.2 and (4.1) we have

T2 . ||σσσh − σσσ||Σ(||ξξξ − Ih ξξξ||0 + ||ϕϕϕ − ϕ̄ϕϕh||0)

. h(||ξξξ − Ih ξξξ||0 + ||ϕϕϕ − ϕ̄ϕϕh||0) . h2 (|ξξξ|1 + |ϕϕϕ|1) . h2||ϕϕϕ||2.
(4.17)
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Concerning the term T3, it holds:

T3 =
∑
E∈Th

sE ((I −ΠE)σσσh, (I −ΠE)IEξξξ)

=
∑
E∈Th

κEhE

∫
∂E

[(I −ΠE)σσσhn] [(I −ΠE)(IEξξξ)n] ds

.
∑
E∈Th

h
1/2
E ||(I −ΠE)σσσhn||0,∂E h1/2

E ||(I −ΠE)(IEξξξ)n||0,∂E .

(4.18)

Under assumption (A1) and (A2), using the same technique developed in Ref. 7,

16, we have that

h
1/2
E ||τττhn||0,∂E . ||τττhn||−1/2,∂E . ||τττh||0,E + hE ||div τττh||0,E ∀τττh ∈ Σh(E).

(4.19)

From (4.18) and (4.19) we then deduce

T3 .

(∑
E∈Th

[
||(I −ΠE)σσσh||20,E + h2

E ||div τττh||20,E
])1/2

(∑
E∈Th

[
||(I −ΠE)IEξξξ||20,E + h2

E ||div(IEξξξ)||20,E
])1/2

.

(4.20)

It holds

||(I −ΠE)σσσh||20,E = ||(σσσh − σσσ) + (σσσ −ΠEσσσh)||20,E
. ||σσσh − σσσ||20,E + ||σσσ −ΠEσσσh||20,E

(4.21)

and

||(I −ΠE)IEξξξ||20,E = ||(IEξξξ − ξξξ) + (ξξξ −ΠE(IEξξξ))||20,E
= ||(IEξξξ − ξξξ) + (ξξξ −ΠEξξξ) + ΠE(ξξξ − IEξξξ)||20,E
. ||IEξξξ − ξξξ||20,E + ||ξξξ −ΠEξξξ||20,E + ||ΠE(ξξξ − IEξξξ)||20,E .

(4.22)

Therefore, we use (4.21), (4.22), the continuity of Πh, Proposition 4.2 and (4.1), to

get

T3 . (||σσσ − σσσh||0 + ||σσσ −Πhσσσ||0 + h||div σσσh||0) ·
(||ξξξ − Ihξξξ||0 + ||ξξξ −Πhξξξ||0 + h||div(Ihξξξ)||0)

. h2|ξξξ|1 . h2||ϕϕϕ||2.
(4.23)

Above, we have also used the estimate ||div σσσh||0 . 1. Now estimate (4.7) follows

from (4.9), (4.11), (4.13), (4.15), (4.17) and (4.23).
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4.2. Error estimate for the Lagrangre multipliers

The next result gives some information about the convergence of the Lagrange

multipliers. To this end we introduce the following two norms on Λh(EIh):

|µµµh|20,h =
∑
e∈EIh

||µµµh||20,e (4.24)

|µµµh|2−1/2,h =
∑
e∈EIh

he ||µµµh||20,e. (4.25)

We also need to define the L2-projection operator

Π∂
0 :
[
L2(EIh)

]2 → [
P0(EIh)

]2 ⊆ Λh(EIh),

such that ∫
e

Π∂
0u · p ds =

∫
e

u · p ds ∀p ∈ [P0(e)]
2
, ∀e ∈ EIh. (4.26)

Theorem 4.4. For every element E ∈ Th and edge e ∈ ∂E ∩ EIh, if {Th}h is

regular, it holds

||Π∂
0 (λλλh − u)||0,e . h

1/2
E ||σσσ − σσσh||0,E + h

−1/2
E ||ūh − uh||0,E , (4.27)

where ūh := ΠRMu, see (4.6).

Proof. Given an element E ∈ Th, we fix an edge e ∈ ∂E∩EIh. Using the unisolvence

of the degrees of freedom of Σh(E), we infer that there exists a unique function

τ̃ττh ∈ Σh(E) such that {
τ̃ττhne = Π∂

0 (λλλh − u) , on e

τ̃ττhnẽ = 0 ∀ẽ 6= e.
(4.28)

Then, recalling that div τ̃ττh ∈ RM(E), an integration by parts, equations (4.28)

and an inverse estimate for polynomials, give

||div τ̃ττh||20,E =

∫
E

div τ̃ττh · div τ̃ττhdE =

∫
∂E

τ̃ττhn · div τ̃ττh ds

≤ ||Π∂
0 (λλλh − u) ||0,e||div τ̃ττh||0,e

. ||Π∂
0 (λλλh − u) ||0,eh−1/2

E ||div τ̃ττh||0,E .

(4.29)

Hence, we get

hE ||div τ̃ττh||0,E . h
1/2
E ||Π

∂
0 (λλλh − u) ||0,e. (4.30)

Using Lemma 5.1 of Ref. 7, from (4.28) and (4.30) we obtain

hE ||div τ̃ττh||0,E + ||τ̃ττh||0,E . h
1/2
E ||Π

∂
0 (λλλh − u) ||0,e. (4.31)

Now, in the first equation of (3.22) we take τττh ∈ Σ̃h(Th) such that

τττh = τ̃ττh in E, and τττh = 0 in Ω \ E, (4.32)
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and using (4.28) we have∫
E

Dσσσh : τ̃ττh dE +

∫
E

uh · div τ̃ττh dE −
∫
e

λλλh ·Π∂
0 (λλλh − u) ds = 0. (4.33)

On the other hand, employing the constitutive law in (2.1) and the Green’s formula,

we infer∫
E

Dσσσ : τ̃ττh dE +

∫
E

u · div τ̃ττh dE −
∫
e

u ·Π∂
0 (λλλh − u) ds = 0. (4.34)

Using (4.33) and (4.34) and recalling the fact that div τ̃ττh ∈ RM(E) we get

||Π∂
0 (λλλh − u)||20,e =

∫
e

Π∂
0 (λλλh − u) ·Π∂

0 (λλλh − u) ds

=

∫
e

(λλλh − u) ·Π∂
0 (λλλh − u) ds

=

∫
E

D(σσσh − σσσ) : τ̃ττh dE +

∫
E

(uh − u) · div τ̃ττh dE

=

∫
E

D(σσσh − σσσ) : τ̃ττh dE +

∫
E

(uh − ūh) · div τ̃ττh dE.

(4.35)

Finally (4.35) and (4.31) give (4.27).

As a consequence of the Theorem above, we have the following corollary, whose

proof is immediate (cf. (4.27), (4.1) and (4.36)).

Corollary 4.5. For each element E ∈ Th and for every edge e ∈ ∂E, we have

|Π∂
0 (λλλh − u)|−1/2,h . h||σσσ − σσσh||0,Ω + ||ūh − uh||0,Ω (4.36)

and

|Π∂
0 (λλλh − u)|−1/2,h . h2. (4.37)

Remark 4.1. The same results of Theorem 4.4 and Corollary 4.5 can be obtained

replacing Π∂
0 with the L2-projection operator

Π∂
R :
[
L2(EIh)

]2 → Λh(EIh),

defined by (cf. (3.4))∫
e

Π∂
Ru · q ds =

∫
e

u · q ds ∀q ∈ R(e) , ∀e ∈ EIh. (4.38)

5. Post-processing

In the present section, we introduce a post-processing procedure which leads to

achieve a better approximation for the displacement field. More precisely, we will

employ the Lagrange multipliers λλλh to construct a non-conforming VEM approxi-

mation u∗h converging to u faster than uh.

Let us start to present the non-conforming VEM spaces, see Ref. 10 for more

details.
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5.1. Non-conforming Sobolev spaces

Given {Th}h, a sequence of regular decomposition of Ω, we define the broken H1

space on Th as

H1(Th) :=
∏

E∈Th

H1(E) =
{
v ∈ L2(Ω) : v|E ∈ H1(E)

}
. (5.1)

Then, in particular [
H1(Th)

]2
:=

∏
E∈Th

[
H1(E)

]2
(5.2)

is the space of vector-valued functions that, are locally in
[
H1(E)

]2
. For the vector

space (5.2), we introduce the corresponding broken seminorm and norm

|v|21,Th :=
∑
E∈Th

||∇v||20,E , ||v||21,Th :=
∑
E∈Th

||v||21,E . (5.3)

In order to define non-conforming Sobolev spaces associated with a polygonal

decomposition, we need to fix some additional notation. Let e be an edge in EIh.

Then, there are two adjacent elements E± which share the same edge e. We write

nE+ , nE− for the exterior unit normal on ∂E+ and ∂E−, respectively. Then, for

v ∈
[
H1(Th)

]2
, we define the jump operator across an edge e ∈ Eh as

〚v〛 :=

{
v+ ⊗ nE+ + v− ⊗ nE− on e ∈ EIh
v ⊗ ne on e ∈ EBh ,

(5.4)

where ⊗ denotes the usual tensor product of vectors. We now introduce the global

non-conforming H1 space as follows

H1,nc
0 (Th) :=

{
v ∈

[
H1(Th)

]2
:

∫
e

〚v〛 ds = 0 ∀e ∈ Eh
}
. (5.5)

We remark that the seminorm | · |1,Th is a norm for functions in H1,nc
0 (Th) and that

the following Poincaré inequality holds true (see Refs. 10, 37):

||v||0 . |v|1,Th ∀v ∈ H1,nc
0 (Th). (5.6)

5.2. A low-order non-conforming Virtual Element Method

We briefly recall the main features of the low-order non-conforming VEM studied

in Refs. 10, 37. Given a polygon E ∈ Th, we define the local non-conforming virtual

space as

U∗h(E) :=

{
v∗h ∈

[
H1(E)

]2
:
∂v∗h
∂n

= ∇v∗hn ∈ [P0(e)]
2 ∀e ∈ ∂E, ∆v∗h = 0

}
.

(5.7)

Accordingly, for the local spaces U∗h(E), we can take the following degrees of free-

dom:

v∗h →
1

|e|

∫
e

v∗h ds. (5.8)
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Therefore, we infer that the dimension of space (5.7) is

dim(U∗h(E)) = 2nEe , (5.9)

where we recall that nEe is the number of element edges. The unisolvence of the

degrees of freedom defined in (5.8) is given by the following proposition, whose

proof can be found in Ref. 10.

Proposition 5.1. Let E be a simple polygon with nEe edges, and let U∗h(E) be the

space defined in (5.7). The degrees of freedom (5.8) are unisolvent for U∗h(E).

The global non-conforming virtual element space is given by

U∗h(Th) :=
{
v∗h ∈ H

1,nc
0 (Th) : v∗h|E ∈ U

∗
h(E) ∀ E ∈ Th

}
. (5.10)

We also need to recall the projection operator Π∇ :
[
H1(E)

]2 → [P1(E)]
2
, defined

by ∫
E

∇(Π∇v∗h) : ∇q dE =

∫
E

∇v∗h : ∇q dE ∀q ∈ [P1(E)]
2∫

∂E

Π∇v∗h dE =

∫
∂E

v∗h dE.

(5.11)

Furthermore, the following estimates will be useful in the sequel.

Proposition 5.2. Under assumptions (A1) and (A2), for every E ∈ Th and every

v∗h ∈ U∗h(E), it holds

|v∗h|1,E . h−1
E ||v

∗
h||0,E (5.12)

and

||v∗h||0,E . h
1/2
E ||Π

∂
0v
∗
h||0,∂E . (5.13)

Proof. We first notice that, since v∗h ∈ U∗h(E) is harmonic in E, we have

|v∗h|21,E =

∫
∂E

∇v∗hn · v∗h ds ≤ ||∇v∗hn||0,∂E ||v∗h||0,∂E . (5.14)

Recalling that (∇v∗hn)|∂E is a piecewise constant vectorial function, under assump-

tions (A1) and (A2), the 1D inverse estimate

||∇v∗hn||0,∂E . h
−1/2
E ||∇v∗hn||−1/2,∂E

holds true. Therefore, we get (cf. Ref. 7 and recall again that div∇v∗h = 0)

||∇v∗hn||0,∂E . h
−1/2
E ||∇v∗h||0,E = h

−1/2
E |v∗h|1,E . (5.15)

Hence, from (5.14) we get
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|v∗h|1,E . h
−1/2
E ||v∗h||0,∂E . (5.16)

We then exploit a scaled trace inequality, see for instance Ref. 20, to infer that it

holds

|v∗h|1,E . h
−1/2
E ||v∗h||

1/2
0,E

(
|v∗h|21,E + h−2

E ||v
∗
h||20,E

)1/4
. (5.17)

Hence, we get

|v∗h|1,E . h
−1/2
E ||v∗h||

1/2
0,E |v

∗
h|

1/2
1,E + h−1

E ||v
∗
h||0,E . (5.18)

Using the Young’s inequality, we obtain

|v∗h|1,E .
1

2δ
h−1
E ||v

∗
h||0,E +

δ

2
|v∗h|1,E + h−1

E ||v
∗
h||0,E , (5.19)

where δ > 0 is at our disposal. We now choose δ sufficiently small to absorb in the

left-hand side the second term of the right-hand side, and thus get (5.12).

To prove (5.13), we first split v∗h ∈ U∗h(E) as

v∗h = (v∗h − v̄∗h) + v̄∗h = w∗h + v̄∗h, (5.20)

where the constant vector v̄∗h is defined by

v̄∗h =
1

|∂E|

∫
∂E

v∗h ds.

and w∗h := v∗h − v̄∗h. Then, a direct computation shows that

||v∗h||0,E ≤ ||w∗h||0,E + ||v̄∗h||0,E . ||w∗h||0,E + h
1/2
E ||v̄

∗
h||0,∂E . (5.21)

To estimate ||w∗h||0,E , we notice that w∗h has zero mean value on ∂E. Therefore, a

Poincaré-type estimate gives, see for instance Ref. 38:

||w∗h||0,E . hE |w∗h|1,E . (5.22)

Using that ∇w∗hn is piecewise constant on ∂E, we get (cf. also (5.15))

|w∗h|21,E =

∫
∂E

∇w∗hn ·w∗h ds =

∫
∂E

∇w∗hn ·Π∂
0w
∗
h ds ≤ ||∇w∗hn||0,∂E ||Π∂

0w
∗
h||0,∂E

. h
−1/2
E ||Π∂

0w
∗
h||0,∂E |w∗h|1,E .

(5.23)

Therefore, we obtain

|w∗h|1,E . h
−1/2
E ||Π∂

0w
∗
h||0,∂E . (5.24)

Combining (5.21), (5.22) and (5.24), we infer

||v∗h||0,E . h
1/2
E

(
||Π∂

0w
∗
h||0,∂E + ||v̄∗h||0,∂E

)
. (5.25)
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We now notice that, since

∫
∂E

Π∂
0w
∗
h · v̄∗h ds = 0,

it holds

||Π∂
0w
∗
h||0,∂E + ||v̄∗h||0,∂E . ||Π∂

0w
∗
h + v̄∗h||0,∂E = ||Π∂

0v
∗
h||0,∂E . (5.26)

Now estimate (5.13) follows from (5.25) and (5.26).

We are ready to prove the following convergence result for a suitable non-

conforming post-processed displacement field.

Theorem 5.3. Let (σσσ,u) be the solution of continuous Problem (2.1) and

(σσσh,uh, λλλh) be the discrete solution of Problem (3.22). Define u∗h ∈ U∗h(Th) such

that it holds:

Π∂
0 (u∗h − λλλh) = 0. (5.27)

Then we have

||u− u∗h||0 . h2. (5.28)

In addition, if the family of meshes {Th}h is also quasi-uniform, it holds

|u− u∗h|1,Th . h. (5.29)

Proof. For the displacement field u, we define the non-conforming interpolant

ũ∗h ∈ U∗h(Th) imposing:

Π∂
0 (ũ∗h − u) = 0 (5.30)

for each edge e ∈ Eh. Due to Proposition 5.1), ũ∗h is well-defined. Similarly, u∗h ∈
U∗h(Th) is well-defined by (5.27). Writing now

u− u∗h = (u− ũ∗h) + (ũ∗h − u∗h) (5.31)

and using the triangle inequality, we have

||u− u∗h||0 ≤ ||u− ũ∗h||0 + ||ũ∗h − u∗h||0. (5.32)

By standard arguments, see Refs. 10, 20, we get

||u− ũ∗h||0 . h2. (5.33)

To estimate ||ũ∗h − u∗h||0, we notice that from (5.27) and (5.30), we have

Π∂
0 (u∗h − ũ∗h) = Π∂

0 (λλλh − u). (5.34)

Fix an element E ∈ Th; due to estimate (5.13) of Proposition 5.2 and to (5.34), we

get

||u∗h − ũ∗h||0,E . h
1/2
E ||Π

∂
0 (u∗h − ũ∗h)||0,∂E = h

1/2
E ||Π

∂
0 (λλλh − u)||0,∂E . (5.35)
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Summing all the local estimates (5.35) and combining with Corollary 4.5, we get

||u∗h − ũ∗h||0 . h2. (5.36)

Estimate (5.28) now follows from (5.32), (5.33) and (5.36). To prove (5.29), we

observe that

|u− u∗h|1,Th ≤ |u− ũ∗h|1,Th + |ũ∗h − u∗h|1,Th . (5.37)

By standard arguments, we have

|u− ũ∗h|1,Th . h. (5.38)

Using the inverse estimate (5.12) of Proposition 5.2, we get

|ũ∗h − u∗h|1,Th =

(∑
E∈Th

|ũ∗h − u∗h|21,E

)1/2

.

(∑
E∈Th

h−2
E ||ũ

∗
h − u∗h||20,E

)1/2

. h−1||ũ∗h − u∗h||0,

(5.39)

where in the last step we have used that the family of meshes is quasi-uniform.

Since

||ũ∗h − u∗h||0 ≤ ||ũ∗h − u||0 + ||u− u∗h||0,

from (5.34) and (5.28), estimate (5.39) leads to

|ũ∗h − u∗h|1,Th . h. (5.40)

Estimate (5.29) now follows from (5.37), (5.38) and (5.40).

6. Numerical Results

In this section we validate the proposed VEM hybridized approach through some

numerical experiments. We first give numerical evidence of the theoretical results.

Then, we compare the solving time of the conforming and hybridized VE method,

showing the better performace of this latter procedure, especially for the 3D case.

We will consider the following two test problems.

Test case 2D. Given Ω1 = [0, 1]2 the unit square, we consider the following ana-

lytical solution

u :=

(
0.5(sin(2πx))2 sin(2πy) cos(2πy)

−0.5(sin(2πy))2 sin(2πx) cos(2πx)

)
. (6.1)

The loading term f is computed accordingly. For this problem we consider a homo-

geneous and isotropic material with Lamé coefficients λ = 105 and µ = 0.5 (nearly

incompressible material).
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Test case 3D. Give the unit cube Ω2 = [0, 1]3, we consider a 3D elastic problem

with the following exact displacement solution and load term:
u1 = u2 = u3 = 10S(x, y, z)

f1 = −10π2((λ+ µ)cos(πx)sin(πy + πz)− (λ+ 4µ)S(x, y, z))

f2 = −10π2((λ+ µ)cos(πy)sin(πx+ πz)− (λ+ 4µ)S(x, y, z))

f3 = −10π2((λ+ µ)cos(πz)sin(πx+ πy)− (λ+ 4µ)S(x, y, z))

(6.2)

where S(x, y, z) = sin(πx) sin(πy) sin(πz). In this case, we consider a compressible

material where the Lamé constants are λ = 1 and µ = 1.

Mesh. In order to test our problems we consider two packages of meshes of four

types each, see Figure 3:

• 2D meshes: the unit square Ω1 is discretized as follows : i) Square, a uni-

form mesh composed by standard structured squares; ii) Tria, a Delanuay

triangolation of the domain Ω1 41; iii) CVT, a centroidal Voronoi tessella-

tion 31 generated with Polymesher 43; iv) Rand, random polygons.

• 3D meshes: for the unit cube Ω2, we take: a) Cube, a uniform mesh com-

posed by standard structured cubes; b) Tetra, a Delanuay tetrahedral-

ization of the domain Ω2 42; c) CVT, a centroidal Voronoi tessellation 31;

d) Rand, random polyhedra thanks to Voronoi tessellation achieved with

random control points.

We remark that the meshes CVT and Rand have interesting features which chal-

lenge the robustness of the virtual element approach. Indeed, they could have some

elements with tiny faces and edges, and we remark that such a situation is not

covered by the developed theory, i.e., the assumptions (A1) and (A2) for the two-

dimensional case are not both satisfied (the same occurs for the 3D case). In order to

assess the convergence rate, for each type of mesh, we define the following mesh-size

h:

h :=
1

NE

NE∑
i=1

hE

where we recall that NE is the number of elements in the mesh, and hE is the

diameter of the polytopal element E.

6.1. Convergence results

The first numerical results focus on the accuracy of the proposed VEM method

using the hybridized procedure on the previous two test cases. To carry out this

assessment, we use the following error norms:

• L2 error norm for the displacement field: ||u− uh||0.

• L2 error on the divergence: ||div σσσ − div σσσh||0.
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i) Square ii) Tria iii) CVT iv) Rand

a) Cube b) Tetra c) CVT d) Rand

Fig. 3. Overview of adopted meshes: in the first row the meshes for test case 2D, while in the

second row the meshes for test case 3D.

• L2 error on the projection: ||σσσ −Πhσσσh||0.

• Discrete error norms for the stress field:

Eσσσ :=

(∑
e∈Eh

he

∫
e

κ |(σσσ − σσσh)n|2 ds

)1/2

,

where κ = 1
2 tr(D) (the material is here homogeneous).

We will give the numerical evidence that all the above quantities behave as O(h).

Fig. 4 and Fig. 5 report the h-convergence of the proposed method for test case

2D and 3D, respectively. Relative errors are displayed. As expected, the hybridiza-

tion leads to an asymptotic convergence rate equal to 1 for all the error norms and

meshes (in fact, the hybridized schemes are equivalent to the original Hellinger-

Reissner methods of Refs. 7 and 28). Moreover, the convergence graphs are very

close to each others, which confirms the good robustness of the proposed VE method

with respect to the mesh choice.

6.2. Post-processing results

The present section has two goals. First of all we numerically confirm the super-

convergence result predicted by Theorem 4.3. Then, we exhibit the accuracy of our

post-processed displacement field.
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Fig. 4. Convergence results. h-convergence results for the test case 2D and for all meshes.
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Fig. 5. Convergence results. h-convergence results for the test case 3D and for all meshes.

Superconvergence. We consider the following error quantities:

• L2 error norm of the ΠRM -projection of the displacement field (cf. (4.6)):

||ūh − uh||0.
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According to Theorem 4.3, the expected behaviour of such an error is O(h2)

for sufficiently regular problems.

• L2 error norm of the projection onto piecewise constants of the displacement

field: ||Π0u− uh||0.

By our convergence analysis, it is straightforward to see that such a quantity

is O(h).
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Fig. 6. Superconvergence results. h-convergence results for test case 2D for all meshes.
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Fig. 7. Superconvergence results. h-convergence results for test case 3D for all meshes.

In Fig. 6 and Fig. 7 we show the convergence graphs for the errors above. Again,

relative errors are displayed. The convergence rate for the error norm EuRM
is 2, in

accordance with the theoretical results, see (4.7). Instead, the error norm Eu0
does

not exhibit the same behaviour: it is only O(h). However, from these graphs we

can also appreciate the robustness of the VEM with respect to element distortions.

Indeed, the convergence lines for the four meshes (2D and 3D) are very close to

each others.
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Post-processing. Since the VE post-processed displacement is not explicitly

known inside the element, we introduce the following error measures

E0
u∗h

:= ||u−Π∇u∗h||0 and E1
u∗h

:= |u−Π∇u∗h|1,Th ,

where the projection operator Π∇ is defined by (5.11). However, we remark that

on simplices the function u∗h is indeed computable: it corresponds to the vectorial

version of the non-conforming Finite Element post-processed solution detailed in

Ref. 27. In such a case, the operator Π∇ is simply the identity.
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Fig. 8. Post-processing. Convergence plots for the error E0
u∗
h

and E1
u∗
h

for test case 2D.
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Fig. 9. Post-processing. Convergence plots for the error E0
u∗
h

and E1
u∗
h

for test case 3D.

In Fig. 8 and Fig. 9 we report the convergence lines for the errors E0
u∗h

and

E1
u∗h

for both test cases. Relative errors are displaced. The convergence rate for

the error E0
u∗h

is approximately 2, while for the error E1
u∗h

is 1, as expected by

Theorem 5.3. Although estimate (5.29) has been proved only for quasi-uniform

meshes, our numerical tests suggests that the same convergence behaviour occurs

for more general situations (e.g., Rand meshes are not quasi-uniform but a first order

convergence rate takes place). Moreover, the convergence lines of the each mesh are
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close to each others, showing, one more time, the VEM robustness with respect to

the deformation of the mesh.

6.3. Comparison of solving time

Our last numerical test concerns the effect of the hybridization on the solution time

of the resulting linear system. Accordingly, we qualitatively compare the solving

times between the standard low-order VEM approach, cf. Refs. 7, 28 and the hy-

bridizated scheme procedure (see Sec. 3, and in particular subsection 3.3). We use

the open-source library PETSc, see Ref. 11. In particular, we use the direct solver

MUMPS: LU factorization for the standard method; Cholesky for the hybridized

one. Moreover, we run our test only on one processor in order to have the same

setting for both the cases.

Table 1. Comparison of solving time between standard approach and hybridization
technique for test case 2D.

Square Tria

Step Standard Hybrid Standard Hybrid

1 0.07 0.07 (33.87%) 0.15 0.17 (39.48%)

2 0.37 0.33 (41.05%) 0.89 0.99 (41.98%)
3 0.81 0.93 (47.70%) 2.05 2.15 (45.65%)

4 4.39 5.11 (55.59%) 17.34 14.26 (54.96%)

CVT Rand

Step Standard Hybrid Standard Hybrid
1 0.16 0.21 (37.88%) 0.15 0.37 (30.17%)

2 1.30 1.22 (53.51%) 1.10 1.22 (51.44%)

3 3.63 2.96 (58.00%) 2.86 2.92 (53.47%)
4 30.55 18.50 (71.00%) 23.13 16.78 (65.81%)

In Table 1 for the 2D case (resp., in Table 2 for the 3D case), we show a com-

parison between the solving time for the standard VE method and the time of the

hybridization procedure (static condensation and solving time) for each mesh re-

finement step. Moreover, in the column “Hybrid”, we also show the percentage of

time used to solve the linear system (3.28). We can notice that, refining the meshes,

the hybridization procedure has better performance (in time) than the standard

procedure (the only exception is the 2D square mesh case, where probably the very

particular structure of the matrix greatly helps in dealing with the linear system

for the standard procedure). Furthermore, focusing only on the hybridization tech-

nique, we observe that the time improvement becomes more and more effective as

the solving process time dominates over the one needed to deal with the static con-

densation (this occurs for larger and larger systems). All the quantities are expressed

in seconds.

Finally, in Table 3 we display the ratios between the time needed to solve the

hybridized problem and the original one, for both the 2D and the 3D cases, and
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Table 2. Comparison of solving time between standard approach and hybridization

technique for test case 3D.

Cube Tetra

Step Standard Hybrid Standard Hybrid
1 0.11 0.11 (38.02%) 0.12 0.11 (32.14%)

2 5.74 3.09 (82.06%) 3.80 2.28 (70.37%)

3 971.33 209.53 (97.15%) 568.12 284.78 (97.43%)
4 4178.47 903.67 (98.78%) 3393.64 1409.92 (98.33%)

CVT Rand

Step Standard Hybrid Standard Hybrid

1 0.86 0.68 (63.22%) 1.22 0.91 (67.32%)
2 97.88 53.43 (94.88%) 161.21 72.13 (95.04%)

3 29062.80 6877.68 (99.56%) 32015.50 14565.00 (99.70%)

4 128626.00 41000.70 (99.86%) 172781.00 81037.80 (99.91%)

considering the finest meshes. This quantity can be considered as an indicator of

the gain when adopting the hybridization technique. As it can be seen, 3D problems

exhibit the greatest improvement.

Table 3. Ratio between the hybridization and the standard approach time for 2D

and 3D cases with the finest meshes for each mesh type.

2D 3D

Square 1.16 Cube 0.21

Tria 0.82 Tetra 0.41
CVT 0.60 CVT 0.31

Rand 0.72 Rand 0.46
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