In this article, we introduce a two-periodic generalization of the QV equation introduced by Viallet. All the equations of Boll's classification appear in it for special choices of the parameters. Using the algebraic entropy test, we infer that the equation should be integrable and with the aid of a formula introduced by Xenitidis we find its three point generalized symmetries.

A two-periodic generalization of the QV equation / G. Gubbiotti, C. Scimiterna, D. Levi. - In: JOURNAL OF INTEGRABLE SYSTEMS. - ISSN 2058-5985. - 2:1(2017), pp. 1-13. [10.1093/integr/xyx004]

A two-periodic generalization of the QV equation

G. Gubbiotti;
2017

Abstract

In this article, we introduce a two-periodic generalization of the QV equation introduced by Viallet. All the equations of Boll's classification appear in it for special choices of the parameters. Using the algebraic entropy test, we infer that the equation should be integrable and with the aid of a formula introduced by Xenitidis we find its three point generalized symmetries.
integrable partial difference equation; quad graph equation; symmetries; algebraic entropy
Settore MAT/07 - Fisica Matematica
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
GLS_JIntSys_2017.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 171.78 kB
Formato Adobe PDF
171.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/904356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact