We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence and nonexistence results, focusing on the radial case, under some general hypothesis on the potential.

A conformal Yamabe problem with potential on the Euclidean space / G. Catino, F. Gazzola, P. Mastrolia. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:5(2021 Oct), pp. 1987-1998. [10.1007/s10231-021-01067-9]

A conformal Yamabe problem with potential on the Euclidean space

P. Mastrolia
Ultimo
2021

Abstract

We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence and nonexistence results, focusing on the radial case, under some general hypothesis on the potential.
Conformal problems; Constant scalar curvature; Ordinary differential equations; Yamabe problem
Settore MAT/05 - Analisi Matematica
Settore MAT/03 - Geometria
ott-2021
feb-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Catino2021_Article_AConformalYamabeProblemWithPot (1).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/903527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact