We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence and nonexistence results, focusing on the radial case, under some general hypothesis on the potential.
A conformal Yamabe problem with potential on the Euclidean space / G. Catino, F. Gazzola, P. Mastrolia. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:5(2021 Oct), pp. 1987-1998. [10.1007/s10231-021-01067-9]
A conformal Yamabe problem with potential on the Euclidean space
P. MastroliaUltimo
2021
Abstract
We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence and nonexistence results, focusing on the radial case, under some general hypothesis on the potential.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Catino2021_Article_AConformalYamabeProblemWithPot (1).pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.