We provide global gradient estimates for solutions to a general type of nonlinear parabolic equations, possibly in a Riemannian geometry setting. Our result is new in comparison with the existing ones in the literature, in light of the validity of the estimates in the global domain, and it detects several additional regularity effects due to special parabolic data. Moreover, our result comprises a large number of nonlinear sources treated by a unified approach, and it recovers many classical results as special cases.

Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations / C. Cavaterra, S. Dipierro, Z. Gao, E. Valdinoci. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:2(2022 Feb), pp. 65.1-65.37. [10.1007/s12220-021-00812-z]

Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations

C. Cavaterra;
2022

Abstract

We provide global gradient estimates for solutions to a general type of nonlinear parabolic equations, possibly in a Riemannian geometry setting. Our result is new in comparison with the existing ones in the literature, in light of the validity of the estimates in the global domain, and it detects several additional regularity effects due to special parabolic data. Moreover, our result comprises a large number of nonlinear sources treated by a unified approach, and it recovers many classical results as special cases.
Global gradient estimates; Maximum Principle; Parabolic equations on Riemannian manifolds
Settore MAT/05 - Analisi Matematica
feb-2022
6-gen-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
2006.00263.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 409.83 kB
Formato Adobe PDF
409.83 kB Adobe PDF Visualizza/Apri
Cavaterra2022_Article_GlobalGradientEstimatesForAGen(1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 535.3 kB
Formato Adobe PDF
535.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/898899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact