The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.

Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma / T.P. Mourikis, L. Benedetti, E. Foxall, D. Temelkovski, J. Nulsen, J. Perner, M. Cereda, J. Lagergren, M. Howell, C. Yau, R.C. Fitzgerald, P. Scaffidi, A. Noorani, P.A.W. Edwards, R.F. Elliott, N. Grehan, B. Nutzinger, C. Hughes, E. Fidziukiewicz, J. Bornschein, S. MacRae, J. Crawte, A. Northrop, G. Contino, X. Li, R. de la Rue, A. Katz-Summercorn, S. Abbas, D. Loureda, M. O'Donovan, A. Miremadi, S. Malhotra, M. Tripathi, S. Tavare, A.G. Lynch, M. Eldridge, M. Secrier, L. Bower, G. Devonshire, S. Jammula, J. Davies, C. Crichton, N. Carroll, P. Safranek, A. Hindmarsh, V. Sujendran, S.J. Hayes, Y. Ang, A. Sharrocks, S.R. Preston, S. Oakes, I. Bagwan, V. Save, R.J.E. Skipworth, T.R. Hupp, J. Robert O'Neill, O. Tucker, A. Beggs, P. Taniere, S. Puig, T.J. Underwood, R.C. Walker, B.L. Grace, H. Barr, N. Shepherd, O. Old, J. Gossage, A. Davies, F. Chang, J. Zylstra, U. Mahadeva, V. Goh, G. Sanders, R. Berrisford, C. Harden, M. Lewis, E. Cheong, B. Kumar, S.L. Parsons, I. Soomro, P. Kaye, J. Saunders, L. Lovat, R. Haidry, L. Igali, M. Scott, S. Sothi, S. Suortamo, S. Lishman, G.B. Hanna, C.J. Peters, K. Moorthy, A. Grabowska, R. Turkington, D. McManus, D. Khoo, W. Fickling, F.D. Ciccarelli. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 10:1(2019 Jul 15), pp. 3101.1-3101.17. [10.1038/s41467-019-10898-3]

Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma

M. Cereda;F.D. Ciccarelli
Ultimo
2019

Abstract

The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.
Adenocarcinoma; Antineoplastic Agents; Biomarkers, Tumor; Computational Biology; Datasets as Topic; Disease Progression; Esophageal Neoplasms; Gene Dosage; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Genomic Instability; Humans; Machine Learning; Models, Genetic; Multigene Family; Mutation Rate; Polymorphism, Single Nucleotide; Precision Medicine
Settore BIO/11 - Biologia Molecolare
Settore MED/06 - Oncologia Medica
15-lug-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41467-019-10898-3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/898565
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact