In this paper, we are interested in a general type of nonlocal energy, defined on a ball BR⊂ Rn for some R> 0 as E(u,BR)=∬R2n(CBR)2F(u(x)-u(y),x-y)dxdy+∫BRW(u)dx.We prove that in R2, under suitable assumptions on the functions F and W, bounded continuous global energy minimizers are one-dimensional. This proves a De Giorgi conjecture for minimizers in dimension two, for a general type of nonlocal energy.
A symmetry result in R2 for global minimizers of a general type of nonlocal energy / C. Bucur. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 59:2(2020), pp. 52.1-52.26. [10.1007/s00526-020-1698-6]
A symmetry result in R2 for global minimizers of a general type of nonlocal energy
C. Bucur
Primo
2020
Abstract
In this paper, we are interested in a general type of nonlocal energy, defined on a ball BR⊂ Rn for some R> 0 as E(u,BR)=∬R2n(CBR)2F(u(x)-u(y),x-y)dxdy+∫BRW(u)dx.We prove that in R2, under suitable assumptions on the functions F and W, bounded continuous global energy minimizers are one-dimensional. This proves a De Giorgi conjecture for minimizers in dimension two, for a general type of nonlocal energy.File | Dimensione | Formato | |
---|---|---|---|
Bucur A symmetry result.pdf
accesso aperto
Descrizione: Article - pre-print
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
291.84 kB
Formato
Adobe PDF
|
291.84 kB | Adobe PDF | Visualizza/Apri |
s00526-020-1698-6.pdf
accesso riservato
Descrizione: Article
Tipologia:
Publisher's version/PDF
Dimensione
400.16 kB
Formato
Adobe PDF
|
400.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.