In this paper, we are interested in a general type of nonlocal energy, defined on a ball BR⊂ Rn for some R> 0 as E(u,BR)=∬R2n(CBR)2F(u(x)-u(y),x-y)dxdy+∫BRW(u)dx.We prove that in R2, under suitable assumptions on the functions F and W, bounded continuous global energy minimizers are one-dimensional. This proves a De Giorgi conjecture for minimizers in dimension two, for a general type of nonlocal energy.

A symmetry result in R2 for global minimizers of a general type of nonlocal energy / C. Bucur. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 59:2(2020), pp. 52.1-52.26. [10.1007/s00526-020-1698-6]

A symmetry result in R2 for global minimizers of a general type of nonlocal energy

C. Bucur
Primo
2020

Abstract

In this paper, we are interested in a general type of nonlocal energy, defined on a ball BR⊂ Rn for some R> 0 as E(u,BR)=∬R2n(CBR)2F(u(x)-u(y),x-y)dxdy+∫BRW(u)dx.We prove that in R2, under suitable assumptions on the functions F and W, bounded continuous global energy minimizers are one-dimensional. This proves a De Giorgi conjecture for minimizers in dimension two, for a general type of nonlocal energy.
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
4_Bucur_A symmetry result in R2 for global minimizers of a general type of nonlocal energy.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 400.16 kB
Formato Adobe PDF
400.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/892828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact