We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.

An open-source machine learning framework for global analyses of parton distributions / R.D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, J.I. Latorre, E.R. Nocera, R.L. Pearson, J. Rojo, R. Stegeman, C. Schwan, M. Ubiali, C. Voisey, M. Wilson. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 81:10(2021), pp. 958.-958.1. [10.1140/epjc/s10052-021-09747-9]

An open-source machine learning framework for global analyses of parton distributions

S. Carrazza
Secondo
;
J. Cruz-Martinez;S. Forte;R. Stegeman;C. Schwan;
2021

Abstract

We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.
English
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/04 - Fisica Nucleare e Subnucleare
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
   NNNPDF
   EUROPEAN COMMISSION
   H2020
   740006
2021
30-ott-2021
Springer
81
10
958
1
12
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
An open-source machine learning framework for global analyses of parton distributions / R.D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, J.I. Latorre, E.R. Nocera, R.L. Pearson, J. Rojo, R. Stegeman, C. Schwan, M. Ubiali, C. Voisey, M. Wilson. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 81:10(2021), pp. 958.-958.1. [10.1140/epjc/s10052-021-09747-9]
open
Prodotti della ricerca::01 - Articolo su periodico
17
262
Article (author)
si
R.D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, T. Giani, S. Iranipour, Z. Kassabov, J.I. Latorre, E.R. Nocera, R.L. Pearson, J. Ro...espandi
File in questo prodotto:
File Dimensione Formato  
2109.02671.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 511.24 kB
Formato Adobe PDF
511.24 kB Adobe PDF Visualizza/Apri
Ball2021_Article_AnOpen-sourceMachineLearningFr.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 760.33 kB
Formato Adobe PDF
760.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/879989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact