We present an approach for enabling a distributed anonymization process over large collections of sensor data. Our approach anonymizes large datasets (which might not fit in main memory) using an arbitrary number of workers within the Spark framework. We describe how to parallelize the anonymization process through a proper partitioning of the dataset. Our experimental evaluation shows that the proposed approach is scalable and do not affect the quality of the anonymized dataset.
Scalable Distributed Data Anonymization / S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, P. Samarati - In: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)[s.l] : IEEE, 2021. - ISBN 978-1-6654-4724-9. - pp. 401-403 (( convegno PerCom tenutosi a Kassel nel 2021 [10.1109/PerComWorkshops51409.2021.9431063].
Scalable Distributed Data Anonymization
S. De Capitani di Vimercati;S. Foresti;P. Samarati
2021
Abstract
We present an approach for enabling a distributed anonymization process over large collections of sensor data. Our approach anonymizes large datasets (which might not fit in main memory) using an arbitrary number of workers within the Spark framework. We describe how to parallelize the anonymization process through a proper partitioning of the dataset. Our experimental evaluation shows that the proposed approach is scalable and do not affect the quality of the anonymized dataset.File | Dimensione | Formato | |
---|---|---|---|
dffoprs-percom2021.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
361.51 kB
Formato
Adobe PDF
|
361.51 kB | Adobe PDF | Visualizza/Apri |
Scalable_Distributed_Data_Anonymization.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
217.86 kB
Formato
Adobe PDF
|
217.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.