
Scalable Distributed Data Anonymization
Sabrina De Capitani di Vimercati∗, Dario Facchinetti†, Sara Foresti∗,

Gianluca Oldani†, Stefano Paraboschi†, Matthew Rossi†, Pierangela Samarati∗
∗ Università degli Studi di Milano, Italy – Email: firstname.lastname@unimi.it
† Università degli Studi di Bergamo, Italy – Email: firstname.lastname@unibg.it

Abstract—We present an approach for enabling a distributed
anonymization process over large collections of sensor data. Our
approach anonymizes large datasets (which might not fit in main
memory) using an arbitrary number of workers within the Spark
framework. We describe how to parallelize the anonymization
process through a proper partitioning of the dataset. Our
experimental evaluation shows that the proposed approach is
scalable and do not affect the quality of the anonymized dataset.

I. INTRODUCTION

Almost every object we use in our everyday life already is
or is going to be smart, equipped with sensors that constantly
collect information about ourselves and the environment where
we live (e.g., smart cars monitor the position of the car, engine
configuration, tire pressure, etc.). Such data are valuable and
may need to be shared with others (e.g., to design better
solutions for autonomous driving) without, however, violating
the privacy of the individuals to whom they refer.

Guaranteeing privacy in datasets containing possible iden-
tifying and sensitive information requires not only refraining
from publishing explicit identities, but also obfuscating data
that can leak (disclose or reduce uncertainty of) such identities
as well as their association with sensitive information. k-
anonymity [1], [2], extended with `-diversity [3], offers such
protection. k-anonymity requires generalizing values of the
quasi-identifier attributes (i.e., attributes that leak information
on respondent’s identities exploiting linkage with external
sources) to ensure each quasi-identifier combination of values
to appear at least k times. `-diversity considers each sensitive
attribute in such operation so to ensure each combination of
quasi-identifier values to be associated with at least ` different
values of the sensitive attribute (see Figure 1(c)).

While simple to express, k-anonymity and `-diversity are
far from simple to enforce, given the need to balance privacy
(in terms of the desired k and `) and utility (in terms of
information loss due to generalization). Also, the computation
of an optimal solution requires evaluating (based on the dataset
content) which quasi-identifying attributes generalize and how,
and hence demands complete visibility of the whole dataset for
operating the generalization steps. Hence, existing solutions
implicitly assume to operate in a centralized environment.
Such an assumption clearly does not fit pervasive systems
where the amount of data collected is huge (there are widely

This work was supported in part by the EC within the H2020 Program under projects
MOSAICrOWN and MARSAL, by the Italian Ministry of Research within the PRIN
program under project HOPE, and by JPMorgan Chase & Co under project “k-anonymity
for AR/VR and IoT/5G”.

Age Country TopSpeed
25 Italy 132
25 Italy 132
30 France 128
42 Italy 110
50 France 115
43 Canada 115
38 USA 126
38 USA 127
38 USA 140

Age Country TopSpeed
[25-30] Europe 132
[25-30] Europe 132
[25-30] Europe 128
[42-50] World 110
[42-50] World 115
[42-50] World 115

38 USA 126
38 USA 127
38 USA 140

(a) (b) (c)

Fig. 1. An example of a dataset (a), its spatial representation and partitioning
(b), and a 3-anonymous and 2-diverse version (c), considering quasi-identifier
Age and Country and sensitive attribute TopSpeed

circulating estimates that a smart car will upload to the cloud
25GB per hour). While scalable distributed architectures can
help in performing computation on such large datasets, their
use in computing an optimal k-anonymous solution requires
careful design. In fact, a simple distribution of the load
among workers would affect either the quality of the solution
or the scalability of the computation (requiring expensive
synchronization and data exchange among workers [4]).

Our contribution. We demonstrate our scalable, efficient,
and effective approach for the distributed enforcement of k-
anonymity and `-diversity requirements on large datasets. Our
solution is based on an adaptation of Mondrian [5], revised to
operate without requiring knowledge of the complete dataset.
Mondrian is a multi-dimensional algorithm that has established
itself as an efficient and effective approach for achieving k-
anonymity. Mondrian leverages a spatial representation of the
data, mapping each quasi-identifier attribute to a dimension
and each combination of values of the quasi-identifier at-
tributes as a point in such a space. Mondrian then recursively
cuts the tuples in each partition (the whole dataset at the first
step) based on their values (lower/higher than the median) for
a quasi-identifying attribute chosen at each cut. The algorithm
terminates when any further cut would generate sub-partitions
with less than k tuples, at which point values of the quasi-
identifier attributes in a partition are substituted with their
generalization. Figure 1(b) shows the spatial representation
and partitioning of the dataset in Figure 1(a), where the
number associated with each data point is the number of tuples
with such values for the quasi-identifier in the dataset.

We have extended Mondrian designing a solution for par-
titioning data for distribution to workers without requiring
knowledge of the whole dataset. We have implemented such an
approach providing parallel execution on a dynamically chosen



Sara Foresti
© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 
�



HDFS Spark cluster

Namenode

Datanodes

...

Cluster Manager

Driver

Workers

n
1

n
1Indexes

0, 2, 5, ...

Partitions

TopSpeed
132
...

140

Country
Italy

USA
...

Age
25
...

0

m

...

38

TopSpeed
132
...

128

Country
Italy

France
...

Age
25
...
30

TopSpeed
132
...

128

Country
Europe

Europe
...

[25 - 30]

Age
[25 - 30]

...

Fig. 2. Architecture and working of the distributed anonymization system

number of workers. The design of our partitioning approach
aims at limiting the need for workers to exchange data, by
splitting the dataset into as many partitions as the number
of workers, which can independently run a revised version
of Mondrian on their portion of the data. The experimental
evaluation shows that our solution provides scalability, while
not affecting the quality of the computed solution.

II. DISTRIBUTED ANONYMIZATION

We illustrate the architecture and working of our system
(available at https://github.com/mosaicrown/mondrian), sup-
porting the distributed anonymization of large datasets.

A. Architecture

Figure 2 illustrates the architecture of our system, which
includes two clusters: an Hadoop Distributed File System
(HDFS) cluster, a well known and widely used solution
for data storage and management, and a Spark cluster for
data processing. Data are split in smaller blocks stored at
datanodes. A namenode in the HDFS cluster manages the data
stored at the datanodes and the access requests to them. For
data processing, we have opted for Spark because it is a widely
used engine for big data analytics that is fully compatible with
the HDFS cluster. Among the nodes in the Spark cluster, one
acts as Spark Cluster Manager and coordinates the work of
the other nodes in the cluster, acting as workers.

Our distributed SPARK anonymization application has been
developed in Python to leverage the Pandas framework, which
can be conveniently used for managing large data collections.
The application is associated with a Spark Driver. The Spark
Driver, which runs on the Spark Cluster Manager, is respon-
sible for converting the application into a set of jobs that are
then divided into smaller execution units, called tasks. The
tasks are allocated to workers by the Spark Cluster Manager.

B. Distributed anonymization algorithm

Our application operates in three steps (Figure 2): pre-
processing, which partitions the dataset and distributes tasks to
workers; anonymization, which anonymizes the dataset; wrap-
up, which computes the information loss and collects other
information related to the anonymization process.

Pre-processing. The first problem addressed consists in de-
ciding how the dataset can be partitioned by the Spark Driver
among the n available workers, in such a way that each worker
can independently apply the anonymization algorithm on the
portion of data assigned to it, without incurring in too much in-
formation loss. We first observe that, while a random partition-
ing of the dataset would work, it may increase the information
loss. We therefore apply a strategy similar to the strategy used
by the original Mondrian for creating sub-partitions: we first
select an attribute of the quasi-identifier on which to partition
the dataset and then create n partitions (one for each worker)
depending on the values of the selected attribute. The attribute
can be selected by applying different metrics (our tool supports
maximum entropy, minimum entropy, and maximum span)
that, however, require to have the dataset in main memory to
determine the distribution of the quasi-identifying attributes’
values. To overcome this problem, we operate on a sample
of the dataset (whose size is a configuration parameter of
our tool) that fits into the main memory of the Spark Driver.
Based on the randomly extracted sample, the Spark Driver
determines the most suitable attribute, and partitions the tuples
in the dataset according to the n-quantiles. We note that, as
confirmed by the experimental results (Section III), operating
on a sample of tuples for performing the first partitioning of
the dataset does not affect the quality of the solution.

Anonymization. The Spark Cluster Manager assigns the
task of anonymizing each partition determined in the pre-
processing step to a worker, depending on different factors
(e.g., the workload, the datanode where data are stored). To
make the system scalable, our implementation forces each
partition to be assigned to a different worker. Each worker
then downloads from the HDFS datanodes its portion of the
dataset, and runs a revised version of Mondrian, without the
need of interacting with the other workers. Our revised version
of Mondrian differs from the original one in two aspects: 1) the
attribute selected for partitioning is determined by applying the
same metric used in the pre-processing step; 2) the partitioning
is performed considering both the k-anonymity and `-diversity
requirements. When the partitions cannot be further divided
without violating k-anonymity nor `-diversity, the tuples in
each partitions are generalized. Our tool implements different
generalization strategies, suited for different kinds of data
(e.g., ranges for numeric attributes, user-defined generaliza-
tion hierarchies for categorical attributes). Before storing the
anonymized portion of dataset back at the datanodes, each
worker computes the information loss on its portion of the
dataset and sends the result to the Spark Driver (see next step).

Wrap-up. To assess the quality of the anonymized dataset, the
Spark Driver computes the information loss produced by our
distributed anonymization algorithm. To this end, the Spark
Driver combines the values of the information loss received
from the workers. Such a combination is done depending on
the information loss metric adopted. Our tools support two of
the most common metrics, that is, the Discernibility Penalty
(DP) and the Global Certainty Penalty (GCP) [6].



	0

	100

	200

	300

	400

	500

	600

	700

	800

	900

	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 	16 	17 	18 	19 	20

Ti
m
e	
[s
]

Number	of	workers

Centralized	Mondrian
Spark-based	Mondrian

Fig. 3. Execution times of the centralized version and distributed version
varying the number of workers

III. EXPERIMENTAL RESULTS

To assess the scalability of our approach and its limited
impact on information loss, we have tested it over the IPUMS
USA dataset [7], which has become a de-facto benchmark for
anonymization solutions. The dataset includes 500,000 tuples.
We assume the quasi-identifier to include attributes State
FIP Code, Age, Education Number, Occupation,
and the sensitive attribute to be Income. We have simulated a
distributed environment using a single server through Docker
containers. Each node in the architecture in Figure 2 runs in
a different Docker container. The server is a 12 cores (24
threads) AMD Ryzen 3900X CPU, with 64 GB RAM and 2
TB SSD, running Ubuntu 20.04 LTS, Apache Spark 3.0.1,
Hadoop 3.2.1, and Pandas 1.1.3. The distributed algorithm
operates over workers equipped with 2GB of RAM and 1
CPU core each. The centralized algorithm relies on 1 CPU
core only, with no limitation on the use of the RAM. Our
experiments aim at comparing 1) the execution time and 2)
the information loss of our distributed approach with those of
the centralized version of Mondrian.

Execution time. Figure 3 illustrates the execution time (in
seconds) for computing a 3-anonymous and 2-diverse version
of the IPUMS USA dataset. The figure shows the execution
time of our distributed (Spark-based) Mondrian varying the
number of workers between 2 and 20. The execution time
of the distributed Mondrian decreases, as expected, when the
number of workers grows with a saving with respect to the
execution time of the centralized Mondrian that ranges from
46% to 85% when using more than 3 workers. This confirm
the scalability of our distributed approach. It is interesting
to note that the centralized Mondrian is more efficient than
the distributed one when the number of workers is low
(2 or 3 in our experiments). This is due to the constant
initialization time paid by the distributed implementation for
setting distribution and interoperation among workers, and by
the different libraries used by the centralized implementation
(NumPy) and by the distributed implementation (Spark APIs).

Information loss. We first observe that the information loss
caused by distribution can be impacted by: 1) the number

100% 0.01% sampling
(centralized) 5 workers 10 workers 20 workers

DP 1.24e7 1.23e7 (±4e5) 1.26e7 (±4e5) 1.33e7 (±1e5)
GCP 6.44 6.47 (±0.08) 6.49 (±0.07) 6.46 (±0.10)

Fig. 4. DP and GCP information loss with 100% and 0.01% sampling

of workers (and hence of partitions), and 2) the size of
the sample used to partition the dataset. Figure 4 illustrates
the average information loss (and its variance) obtained in
5 runs of the centralized and distributed (with 5, 10, and
20 workers) Mondrian for computing a 5-anonymous and 2-
diverse version of the IPUMS USA dataset, assuming 0.01%
and 100% sampling. In the table, 100% sampling corresponds
to the centralized Mondrian, since in our experiments the
information loss is substantially not affected by distribution.

The results we obtained confirm that, as expected, informa-
tion loss grows with the number of workers (i.e., values in DP
and GCP lines in Figure 4 grow when moving from left to
right), but the impact is negligible. Also, the results show that
sampling has a very limited impact on information loss (i.e.,
values obtained with 0.01% sampling are slightly higher than
the values obtained with 100% sampling). For instance, GCP
increases of less than 2% when passing from the centralized
version with 100% sampling to the distributed version with 20
workers and 0.01% sampling. DP has a similar trend.

We can then conclude that parallelization provides high
scalability at a limited cost in terms of information loss.

IV. CONCLUSIONS

We have proposed a distributed version of Mondrian that
provides scalability without affecting information loss and
leveraging an arbitrary number of independent workers.

Our demo shows the working of our distributed Spark
anonymization application. Parameter settings, work distribu-
tion, and anonymization results are conveniently controllable
via a web interface. The interface enables setting the param-
eters for privacy (i.e., k and `) and distribution (i.e., number
of workers) and provides a visual representation of the system
working, as well as of the privacy and utility guarantees for
different information loss metrics.

REFERENCES

[1] P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE TKDE, vol. 13, no. 6, pp. 1010–1027, November/December 2001.

[2] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “k-
Anonymity,” in Secure Data Management in Decentralized Systems, T. Yu
and S. Jajodia, Eds. Springer-Verlag, 2007.

[3] A. Machanavajjhala, J. Gehrke, and D. Kifer, “`-diversity: Privacy beyond
k-anonymity,” in Proc. of ICDE, Atlanta, GA, USA, April 2006.

[4] F. Ashkouti, K. Khamforoosh, and A. Sheikhahmadi, “DI-Mondrian:
Distributed improved Mondrian for satisfaction of the `-diversity privacy
model using Apache Spark,” Information Sciences, vol. 546, pp. 1–24,
2021.

[5] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidimen-
sional k-anonymity,” in Proc. of ICDE, Atlanta, GA, USA, 2006.

[6] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.-C. Fu, “Utility-based
anonymization for privacy preservation with less information loss,” ACM
SIGKDD Explorations Newsletter, vol. 8, no. 2, pp. 21–30, 2006.

[7] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and
M. Sobek, “IPUMS USA: Version 10.0 [dataset],” Minneapolis, MN:
IPUMS, 2020, https://doi.org/10.18128/D010.V10.0.


