The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G1 and mitosis. In fact, delaying either the G1/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.

G1/S and G2/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint / N. Manfrini, E. Gobbini, V. Baldo, C. Trovesi, G. Lucchini, M.P. Longhese. - In: MOLECULAR AND CELLULAR BIOLOGY. - ISSN 0270-7306. - 32:24(2012), pp. 4971-4985. [10.1128/MCB.00956-12]

G1/S and G2/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint

N. Manfrini
Primo
;
C. Trovesi;
2012

Abstract

The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G1 and mitosis. In fact, delaying either the G1/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.
CDC2 Protein Kinase; Cell Cycle Proteins; Checkpoint Kinase 2; DNA Replication; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Genes, Fungal; Hydroxyurea; Intracellular Signaling Peptides and Proteins; Mutation; Protein-Serine-Threonine Kinases; S Phase Cell Cycle Checkpoints; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/18 - Genetica
Article (author)
File in questo prodotto:
File Dimensione Formato  
6_MCB_2012.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.07 MB
Formato Adobe PDF
6.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/861038
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact