We prove the existence of small amplitude, time-quasi-periodic solutions (invariant tori) for the incompressible Navier-Stokes equation on the d-dimensional torus T-d, with a small, quasi-periodic in time external force. We also show that they are orbitally and asymptotically stable in H-s (for s large enough). More precisely, for any initial datum which is close to the invariant torus, there exists a unique global in time solution which stays close to the invariant torus for all times. Moreover, the solution converges asymptotically to the invariant torus for t ->+infinity, with an exponential rate of convergence O(e(-alpha t)) for any arbitrary alpha is an element of(0, 1).
The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions / R. Montalto. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - 33:3(2021 Sep), pp. 1341-1362. [10.1007/s10884-021-09944-w]
The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions
R. Montalto
2021
Abstract
We prove the existence of small amplitude, time-quasi-periodic solutions (invariant tori) for the incompressible Navier-Stokes equation on the d-dimensional torus T-d, with a small, quasi-periodic in time external force. We also show that they are orbitally and asymptotically stable in H-s (for s large enough). More precisely, for any initial datum which is close to the invariant torus, there exists a unique global in time solution which stays close to the invariant torus for all times. Moreover, the solution converges asymptotically to the invariant torus for t ->+infinity, with an exponential rate of convergence O(e(-alpha t)) for any arbitrary alpha is an element of(0, 1).File | Dimensione | Formato | |
---|---|---|---|
2005.13354.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
280.12 kB
Formato
Adobe PDF
|
280.12 kB | Adobe PDF | Visualizza/Apri |
Montalto2021_Article_TheNavierStokesEquationWithTim.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
434.74 kB
Formato
Adobe PDF
|
434.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.