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Abstract
We prove the existence of small amplitude, time-quasi-periodic solutions (invariant tori) for
the incompressible Navier–Stokes equation on the d-dimensional torus Td , with a small,
quasi-periodic in time external force. We also show that they are orbitally and asymptotically
stable in Hs (for s large enough). More precisely, for any initial datum which is close to the
invariant torus, there exists a unique global in time solution which stays close to the invariant
torus for all times. Moreover, the solution converges asymptotically to the invariant torus for
t → +∞, with an exponential rate of convergence O(e−αt ) for any arbitrary α ∈ (0, 1).
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1 Introduction andMain Results

We consider the Navier–Stokes equation for an incompressible fluid on the d-dimensional
torus Td , d ≥ 2, T := R/2πZ,{

∂t u − �u + u · ∇u + ∇ p = ε f (ωt, x)

div u = 0
(1.1)

where ε ∈ (0, 1) is a small parameter, the frequency ω = (ω1, . . . , ων) ∈ R
ν is a ν-

dimensional vector and f : Tν × T
d → R

d is a smooth quasi-periodic external force. The
unknowns of the problem are the velocity field u = (u1, . . . , ud) : R × T

d → R
d , and the

pressure p : R × T
d → R. For convenience, we set the viscosity parameter in front of the

laplacian equal to one. We assume that f has zero space-time average, namely∫
Tν×Td

f (ϕ, x) dϕ dx = 0 . (1.2)

The purpose of the present paper is to show the existence and the stability of smooth quasi-
periodic solutions of the Eq. (1.1). More precisely we show that if f is a sufficiently regular
vector field satisfying (1.2), for ε sufficiently small and for ω ∈ R

ν Diophantine 1, i.e.

|ω · 
| ≥ γ

|
|ν , ∀
 ∈ Z
ν\{0} ,

for some γ ∈ (0, 1),
(1.3)

then the Eq. (1.1) admits smooth quasi-periodic solutions (which are referred to also as
invariant tori) uω(t, x) = U (ωt, x), pω(t, x) = P(ωt, x), U : T

ν × T
d → R

d , P :
T

ν ×T
d → R of size O(ε), oscillating with the same frequency ω ∈ R

ν of the forcing term.
If the forcing term has zero-average in x , i.e.∫

Td
f (ϕ, x) dx = 0, ∀ϕ ∈ T

ν (1.4)

then the result holds for any frequency vector ω ∈ R
ν , without requiring any non-resonance

condition. Furthermore, we show also the orbital and the asymptotic stability of these quasi-
periodic solutions in high Sobolev norms. More precisely, for any sufficiently regular initial
datum which is δ-close to the invariant torus (w.r. to the Hs topology), the corresponding
solution of (1.1) is global in time and it satisfies the following properties.

• Orbital stability For all times t ≥ 0, the distance in Hs between the solution and the
invariant torus is of order O(δ).

• Asymptotic stability The solution converges asymptotically to the invariant torus in high
Sobolev norm ‖ · ‖Hs

x
as t → +∞, with a rate of convergence which is exponential, i.e.

O(e−αt ), for any arbitrary α ∈ (0, 1).

In order to state precisely our main results, we introduce some notations. For any vector

a = (a1, . . . , ap) ∈ R
p ,wedenote by |a| itsEuclideannorm, namely |a| :=

√
a21 + · · · + a2p .

Let d, n ∈ N and a function u ∈ L2(Td ,Rn). Then u(x) can be expanded in Fourier series

u(x) =
∑
ξ∈Zd

û(ξ)eix ·ξ

1 It is well known that a.e. frequency in R
ν (w.r. to the Lebesgue measure) is diophantine.
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where its Fourier coefficients û(ξ) are defined by

û(ξ) := 1

(2π)d

∫
Td

u(x)e−ix ·ξ dx, ∀ξ ∈ Z
d .

For any s ≥ 0, we denote by Hs(Td ,Rn) the standard Sobolev space of functions u : Td →
R
n equipped by the norm

‖u‖Hs
x

:=
( ∑

ξ∈Zd

〈ξ 〉2s |̂u(ξ)|2
) 1

2
, 〈ξ 〉 := max{1, |ξ |} . (1.5)

We also define the Sobolev space of functions with zero average

Hs
0 (Td ,Rn) :=

{
u ∈ Hs(Td ,Rn) :

∫
Td

u(x) dx = 0
}

. (1.6)

Moreover, given a Banach space (X , ‖ · ‖X ) and an interval I ⊆ R, we denote by C0b(I, X)

the space of bounded, continuous functions u : I → X , equipped with the sup-norm

‖u‖C0
t X

:= sup
t∈I

‖u(t)‖X .

For any integer k ≥ 1, Ckb(I, X) is the space of k-times differentiable functions u : I → X
with continuous and bounded derivatives equipped with the norm

‖u‖Ck
t X

:= maxn≤k‖∂nt u‖C0
t X

.

In a similar way we define the spaces C0(Tν, X), Ck(Tν, X), k ≥ 1 and the corresponding
norms ‖ · ‖C0

ϕ X
, ‖ · ‖Ck

ϕ X
(where Tν is the ν-dimensional torus). We also denote by CN (Tν ×

T
d ,Rd) the space of N -times continuously differentiable functionsTν ×T

d → R
d equipped

with the standard CN norm ‖ · ‖CN .
Notation.Throughout the whole paper, the notation A � B means that there exists a constant
C which can depend on the number of frequencies ν, the dimension of the torus d , the constant
γ appearing in the diophantine condition (1.3) and on the CN norm of the forcing term ‖ f ‖CN

such that A ≤ B. Given n positive real numbers s1, . . . , sn > 0, we write A �s1,...,sn B if
there exists a constantC = C(s1, . . . , sn) > 0 (eventually depending also on d, ν, γ, ‖ f ‖CN )
such that A ≤ CB.
We are now ready to state the main results of our paper.

Theorem 1.1 (Existence of quasi-periodic solutions) Let s > d/2 + 1, N > 3ν
2 + s + 2,

ω ∈ R
ν diophantine (see 1.3) and assume that the forcing term f is in CN (Tν × T

d ,Rd)

and it satisfies (1.2). Then there exists ε0 = ε0( f , s, d, ν) ∈ (0, 1) small enough and a
constant C = C( f , s, d, ν) > 0 large enough such that for any ε ∈ (0, ε0) there exist
U ∈ C1(Tν, Hs(Td ,Rd)), P ∈ C0(Tν, Hs(Td ,R)) satisfying∫

Tν×Td
U (ϕ, x) dϕ dx = 0,

∫
Td

P(ϕ, x) dx = 0, ∀ϕ ∈ T
ν

such that (uω(t, x), pω(t, x)) := (U (ωt, x), P(ωt, x)) solves the Navier–Stokes equation
(1.1) and

‖U‖C1
ϕH

s
x
, ‖P‖C0

ϕH
s
x

≤ Cε .
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If the forcing term f has zero space average, i.e. it satisfies (1.4), then the same statement
holds for any frequency vector ω ∈ R

ν and U (ϕ, x) satisfies∫
Td

U (ϕ, x) dx = 0, ∀ϕ ∈ T
ν .

Theorem 1.2 (Stability) Let α ∈ (0, 1), s > d/2 + 1, N > 3ν
2 + s + 2, uω, pω be given in

Theorem 1.1. Then there exists δ = δ( f , s, α, d, ν) ∈ (0, 1) small enough and a constant
C = C( f , s, α, d, ν) > 0 large enough such that for ε ≤ δ and for any initial datum
u0 ∈ Hs(Td ,Rd) satisfying

‖u0 − uω(0, ·)‖Hs
x

≤ δ,

∫
Td

(
u0(x) − uω(0, x)

)
dx = 0

there exists a unique global solution (u, p) of the Navier–Stokes equation (1.1) with initial
datum u(0, x) = u0(x) which satisfies

u ∈ C0b
(
[0,+∞), Hs(Td ,Rd)

)
∩ C1b

(
[0,+∞), Hs−2(Td ,Rd)

)
,

p ∈ C0b
(
[0,+∞), Hs

0 (Td ,R)
)
,∫

Td

(
u(t, x) − uω(t, x)

)
dx = 0 , ∀t ≥ 0 ,

‖u(t, ·) − uω(t, ·)‖Hs
x
, ‖∂t u(t, ·) − ∂t uω(t, ·)‖Hs−2

x
, ‖p(t, ·) − pω(t, ·)‖Hs

x
≤ Cδe−αt

for any t ≥ 0.

The investigation of the Navier–Stokes equation with time periodic external force dates back
to Serrin [40], Yudovich [41], Lions [30], Prodi [36] and Prouse [37]. In these papers the
authors proved the existence of weak periodic solutions on bounded domains, oscillatingwith
the same frequency of the external force. The existence of weak quasi-periodic solutions
in dimension two has been proved by Prouse [38]. More recently these results have been
extended to unbounded domains by Maremonti [27], Maremonti-Padula [28], Salvi [39] and
then by Galdi [19,20], Galdi-Silvestre [21], Galdi-Kyed [22] and Kyed [32]. We point out
that in some of the aforementioned results, no smallness assumptions on the forcing term are
needed and therefore, the periodic solutions obtained are not small in size, see for instance
[28,36–41]. The asymptotic stability of periodic solutions (also referred to as attainability
property) has been also investigated in [27,28], but it is only proved with respect to the L2-
norm and the rate of convergence provided is O(t−η) for some constant η > 0.More recently
Galdi and Hishida [23] proved the asymptotic stability for the Navier–Stokes equation with a
translation velocity term, by using the Lorentz spaces and they provided a rate of convergence

which is essentially O(t− 1
2+ε). In the present paper we consider the Navier–Stokes equation

on the d-dimensional torus with a small, quasi-periodic in time external force. We show the
existence of smooth quasi-periodic solutions (which are also referred to as invariant tori) of
small amplitude and we prove their orbital and asymptotic stability in Hs for s large enough
(at least larger than d/2 + 1). Furthermore the rate of convergence to the invariant torus,
in Hs , for t → +∞ is of order O(e−αt ) for any arbitrary α ∈ (0, 1). To the best of our
knowledge, this is the first result of this kind.
It is also worth to mention that the existence of quasi-periodic solutions, that is also referred
to as KAM (Kolmogorov-Arnold-Moser) theory, for dispersive and hyperbolic-type PDEs
is a more difficult matter, due to the presence of the so-called small divisors problem. The
existence of time-periodic and quasi-periodic solutions of PDEs started in the late 1980s with
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the pioneering papers of Kuksin [33], Wayne [43] and Craig-Wayne [13], see also [31,34]
for generalizations to PDEs with unbounded nonlinearities. We refer to the recent review [7]
for a complete list of references.
Many PDEs arising from fluid dynamics like the water waves equations or the Euler equation
are fully nonlinear or quasi-linear equations (the nonlinear part contains asmanyderivatives as
the linear part). The breakthrough idea, based on pseudo-differential calculus andmicro-local
analysis, in order to deal with these kind of PDEs has been introduced by Iooss, Plotnikov and
Toland [25] in the problem of finding periodic solutions for the water waves equation. The
methods developed in [25], combined with a KAM-normal form procedure have been used
to develop a general method for PDEs in one dimension, which allows to construct quasi-
periodic solutions of quasilinear and fully nonlinear PDEs, see [1,2,11,17] and references
therein. The extension of KAM theory to higher space dimension d > 1 is a difficult matter
due to the presence of very strong resonance-phenomena, often related to high multiplicity of
eigenvalues. The first breakthrough results in this directions (for equations with perturbations
which do not contain derivatives) have been obtained by Eliasson and Kuksin [16] and by
Bourgain [12] (see also Berti-Bolle [8,9], Geng-Xu-You [24], Procesi-Procesi [35], Berti-
Corsi-Procesi [10].)

Extending KAM theory to PDEs with unbounded perturbations in higher space dimension
is one of the main open problems in the field. Up to now, this has been achieved only in few
examples, see [4–6,15,18,29] and recently on the 3D Euler equation [3] which is the most
meaningful physical example.
For the Navier–Stokes equation, unlike in the aforementioned papers on KAM for PDEs, the
existence of quasi-periodic solutions is not a small divisors problem and it can be done by
using a classical fixed point argument. This is due to the fact that the Navier–Stokes equation
is a parabolic PDE and the presence of dissipation avoids the small divisors. In the same spirit,
it is also worth to mention [14,42], in which the authors investigate quasi-periodic solutions
of some PDEs with singular damping, in which the small divisors problem is avoided thanks
to this damping term. We also point out that the present paper is the first example in which
the stability of invariant tori, in high Sobolev norms, is proved for all times (and it is even an
asymptotic stability). This is possible since the presence of the dissipation allows to prove
strong time-decay estimates from which one deduces orbital and asymptotic stability. In the
framework of dispersive and hyperbolic PDEs, the orbital stability of invariant tori is usually
proved only for large, but finite, times by using normal form techniques. The first result in
this direction has been proved in [26]. In the remaining part of the introduction, we sketch
the main points of our proof.
As we already explained above, the absence of small divisors is due to the fact that the
Navier–Stokes equation is a parabolic PDE.More precisely, this fact is related to invertibility
properties of the linear operator Lω := ω · ∂ϕ − � (where ω · ∂ϕ := ∑ν

i=0 ωi∂ϕi ) acting on
Sobolev spaces of functions u(ϕ, x), (ϕ, x) ∈ T

ν ×T
d with zero average w.r. to x . Since the

eigenvalues of Lω are iω · 
 + | j |2, 
 ∈ Z
ν , j ∈ Z

d\{0}, the inverse of Lω gains two space
derivatives, see Lemma 3.2. This is suffcient to perform a fixed point argument on the map�

defined in (3.13) from which one deduces the existence of smooth quasi-periodic solutions
of small amplitude. The asymptotic and orbital stability of quasi-periodic solutions (which
are constructed in Sect. 3) are proved in Sect. 4. More precisely we show that for any initial
datum u0 which is δ-close to the quasi-periodic solution uω(0, x) in Hs norm (and such that
u0 − uω(0, ·) has zero average), there exists a unique solution (u, p) such that

‖u(t, ·) − uω(t, ·)‖Hs
x

= O(δe−αt ), ‖p(t, ·) − pω(t, ·)‖Hs
x

= O(δe−αt ) , α ∈ (0, 1)
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for any t ≥ 0. This is exactly the content of Theorem 1.2, which easily follows from Propo-
sition 4.1. This Proposition is proved also by a fixed point argument on the nonlinear map �

defined in (4.31) in weighted Sobolev spaces Es (see (4.14)), defined by the norm

‖u‖Es := sup
t≥0

eαt‖u(t, ·)‖Hs
x

where α ∈ (0, 1) is a fixed constant. The fixed point argument relies on some dispersive-type
estimates for the heat propagator et�, which are proved in Sect. 4.1. The key estimates are
the following.

1. For any u0 ∈ Hs−1(Td ,Rd) with zero average and for any n ∈ N, α ∈ (0, 1), t > 0, one
has

‖et�u0‖Hs
x

≤ C(n, α)t−
n
2 e−αt‖u0‖Hs−1

x
(1.7)

for some constant C(n, α) > 0 (see Lemma 4.2). This estimate states that the heat
propagator gains one-space derivative and exponential decay in time e−αt t− n

2 . Note
that, without gain of derivatives on u0, the exponential decay is stronger, namely e−t , see
Lemma 4.2-(i).

2. For any f ∈ Es−1 ∥∥∥ ∫ t

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

≤ C(α)e−αt‖ f ‖Es−1 (1.8)

for some constant C(α) > 0 (see Proposition 4.5). This estimate states that the integral
termwhichusually appears in theDuhamel formula (see (4.31)) gains one space derivative
w.r. to f (t, x) and keeps the same exponential decay in time as f (t, x).

We also remark that the constants C(n, α), C(α) appearing in the estimates (1.7), (1.8) tend
to ∞ when α → 1. This is the reason why it is not possible to get a decay O(e−t ) in the
asymptotic stability estimate provided in Theorem 1.2.
The latter two estimates allow to show in Proposition 4.9 that the map � defined in (4.31) is
a contraction. The proof of Theorem 1.2 is then easily concluded in Sect. 4.3.
It is also worth to mention that our methods does not cover the zero viscosity limit μ → 0,
whereμ is the usual viscosity parameter in front of the laplacian (that we set for convenience
equal to one). Indeed some constants in our estimates become infinity whenμ → 0. Actually,
it would be very interesting to study the singular perturbation problem for μ → 0 and to see
if one is able to recover the quasi-periodic solutions of the Euler equation constructed in [3].
As a concluding remark, we mention that the methods used in this paper also apply to other
parabolic-type equations with some technical modifications. For instance, one could prove
the existence of quasi-periodic solutions (Theorem1.1) for a general fully nonlinear parabolic
type equation of the form

∂t u − �u + mu + N (x, u,∇u,∇2u) = ε f (ωt, x), m > 0

where N is a smooth nonlinearity depending also on the second derivatives of u and which
is at least quadratic w.r. to (u,∇u,∇2u). Indeed, as we explained above, this can be done by
a fixed point argument, by inverting the operator Lω := ω · ∂ϕ − � +m. The inverse of this
operator gains two space derivatives and hence it compensates the fact that the nonlinearity
has a loss of two space-derivatives.
We prefer in this paper to focus on the Navier–Stokes equation for clarity of exposition and
since it is a very important physical model.
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2 Functional Spaces

In this section we collect some standard technical tools which will be used in the proof of
our results. For u = (u1, . . . , un) ∈ Hs(Td ,Rn), one has

‖u‖Hs
x

� maxi=1,...,n‖ui‖Hs
x
. (2.1)

The following standard algebra lemma holds.

Lemma 2.1 Let s > d/2 and u, v ∈ Hs(Td ,Rn). Then u · v ∈ Hs(Td ,R) (where · denotes
the standard scalar product on Rn) and ‖u · v‖Hs

x
�s ‖u‖Hs

x
‖v‖Hs

x
.

We also consider functions

T
ν → L2(Td ,Rn), ϕ �→ u(ϕ, ·)

which are in L2
(
T

ν, L2(Td ,Rn)
)
. We can write the Fourier series of a function u ∈

L2
(
T

ν, L2(Td ,Rn)
)
as

u(ϕ, ·) =
∑

∈Zν

û(
, ·)ei
·ϕ (2.2)

where

û(
, ·) := 1

(2π)ν

∫
Tν

u(ϕ, ·)e−i
·ϕ dϕ ∈ L2(Td ,Rn), 
 ∈ Z
ν . (2.3)

By expanding also the function û(
, ·) in Fourier series, we get

û(
, x) =
∑
j∈Zd

û(
, j)ei j ·x ,

û(
, j) := 1

(2π)ν+d

∫
Tν+d

u(ϕ, x)e−i
·ϕe−i j ·x dϕ dx, (
, j) ∈ Z
ν × Z

d

(2.4)

and hence we can write

u(ϕ, x) =
∑

∈Zν

∑
j∈Zd

û(
, j)ei
·ϕei j ·x . (2.5)

For anyσ, s ≥ 0,we define the Sobolev space Hσ
(
T

ν, Hs(Td ,Rn)
)
as the space of functions

u ∈ L2
(
T

ν, L2(Td ,Rn)
)
equipped by the norm

‖u‖σ,s ≡ ‖u‖Hσ
ϕ Hs

x
:=

( ∑

∈Zν

〈
〉2σ ‖û(
)‖Hs
x

) 1
2 =

( ∑

∈Zν

∑
j∈Zd

〈
〉2σ 〈 j〉2s |̂u(
, j)|2
) 1

2
.

(2.6)

Similarly to (2.1), one has that for u = (u1, . . . , un) ∈ Hσ
(
T

ν, Hs(Td ,Rn)
)

‖u‖σ,s � maxi=1,...,n‖ui‖σ,s . (2.7)

If σ > ν/2, then

Hσ
(
T

ν, Hs(Td ,Rn)
)

is compactly embedded in C0
(
T

ν, Hs(Td ,Rn)
)

,

and ‖u‖C0
ϕH

s
x

�σ ‖u‖Hσ
ϕ Hs

x
.

(2.8)

Moreover, the following standard algebra property holds.
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Lemma 2.2 Let σ > ν
2 , s > d

2 , u, v ∈ Hσ
(
T

ν, Hs(Td ,Rn)
)
. Then u · v ∈

Hσ
(
T

ν, Hs(Td ,R)
)
and ‖u · v‖σ,s �σ,s ‖u‖σ,s‖v‖σ,s .

For any u ∈ L2(Td ,Rn) we define the orthogonal projections π0 and π⊥
0 as

π0u := 1

(2π)d

∫
Td

u(x) dx = û(0) and π⊥
0 u := u − π0u =

∑
ξ∈Zd\{0}

û(ξ)eix ·ξ . (2.9)

According to (2.9), (2.5), every function u ∈ L2
(
T

ν, L2(Td ,Rn)
)
can be decomposed as

u(ϕ, x) = u0(ϕ) + u⊥(ϕ, x) ,

u0(ϕ) := π0u(ϕ) =
∑

∈Zν

û(
, 0)ei
·ϕ ,

u⊥(ϕ, x) := π⊥
0 u(ϕ, x) =

∑

∈Zν

∑
j∈Zd\{0}

û(
, j)ei
·ϕei j ·x .

(2.10)

Clearly if u ∈ Hσ
(
T

ν, Hs(Td ,Rn)
)
, σ, s ≥ 0, then

u0 ∈ Hσ (Tν,Rd) and ‖u0‖σ ≤ ‖u‖σ,0 ≤ ‖u‖σ,s ,

u⊥ ∈ Hσ
(
T

ν, Hs
0 (Td ,Rn)

)
and ‖u⊥‖σ,s ≤ ‖u‖σ,s ,

‖u‖σ,s = ‖u0‖σ + ‖u⊥‖σ,s .

(2.11)

We also prove the following lemma that we shall apply in Sect. 4.

Lemma 2.3 Let σ > ν/2, U ∈ Hσ
(
T

ν, Hs(Td ,Rn)
)
and ω ∈ R

ν . Defining uω(t, x) :=
U (ωt, x), (t, x) ∈ R × T

d , one has that uω ∈ C0b
(
R, Hs(Td ,Rn)

)
and ‖uω‖C0

t Hs
x

�σ

‖U‖σ,s .

Proof By the Sobolev embedding (2.8), and using that the map R → T
d , t �→ ωt is contin-

uous, one has that uω ∈ C0b
(
R, Hs(Td ,Rn)

)
and

‖uω‖C0
t Hs

x
≤ ‖U‖C0

ϕH
s
x

�σ ‖U‖Hσ
ϕ Hs

x
.

2.1 Leray Projector and Some Elementary Properties of the Navier–Stokes Equation

We introduce the space of zero-divergence vector fields

D0(T
d) :=

{
u ∈ L2(Td ,Rd) : div(u) = 0

}
(2.12)

where clearly the divergence has to be interpreted in a distributional sense. The L2-orthogonal
projector on this subspace of L2(Td ,Rd) is called the Leray projector and its explicit formula
is given by

L : L2(Td ,Rd) → D0(T
d) ,

L(u) := u + ∇(−�)−1div(u)
(2.13)
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where the inverse of the laplacian (on the space of zero average functions) (−�)−1 is defined
by

(−�)−1u(x) :=
∑

ξ∈Zd\{0}

1

|ξ |2 û(ξ)eix ·ξ . (2.14)

By expanding in Fourier series, the Leray projector L can be written as

L(u)(x) = u(x) +
∑

ξ∈Zd\{0}

ξ

|ξ |2 ξ · û(ξ)eix ·ξ . (2.15)

By the latter formula, one immediately deduces some elementary properties of the Leray
projector L. One has∫

Td
L(u)(x) dx =

∫
Td

u(x) dx, ∀u ∈ L2(Td ,Rd) (2.16)

and for any Fourier multiplier �, �u(x) = ∑
ξ∈Zd �(ξ )̂u(ξ)eix ·ξ , the commutator

[L,�] = L� − �L = 0 . (2.17)

Moreover
‖L(u)‖Hs

x
� ‖u‖Hs

x
, ∀u ∈ Hs(Td ,Rd) ,

‖L(u)‖σ,s � ‖u‖σ,s, ∀u ∈ Hσ
(
T

ν, Hs(Td ,Rd)
)

.
(2.18)

For later purposes, we now prove the following Lemma.

Lemma 2.4 (i) Let u, v ∈ H1(Td ,Rd) and assume that div(u) = 0, then u ·∇v, L(u ·∇v)

have zero average.

(ii) Let σ > ν/2, s > d/2, u ∈ Hσ
(
T

ν, Hs(Td ,Rd)
)
, v ∈ Hσ

(
T

ν, Hs+1(Td ,Rd)
)
.

Then u · ∇v ∈ Hσ
(
T

ν, Hs(Td ,Rd)
)
and ‖u · ∇v‖σ,s �σ,s ‖u‖σ,s‖v‖σ,s+1.

Proof of (i) By integrating by parts,∫
Td

L(u · ∇v) dx
(2.16)=

∫
Td

u · ∇v dx = −
∫
Td

div(u)v dx = 0 .

Proof of (i i) For u = (u1, . . . , ud), v = (v1, . . . , vd), the vector field u · ∇v is given by

u · ∇v =
(
u · ∇v1, u · ∇v2, . . . , u · ∇vd

)
.

Then the claimed statement follows by (2.7) and the algebra Lemma 2.2.

3 Construction of Quasi-Periodic Solutions

We look for quasi periodic solutions uω(t, x), pω(t, x) of the Eq. (1.1), oscillating with
frequency ω = (ω1, . . . , ων) ∈ R

ν , namely we look for uω(t, x) := U (ωt, x), pω(t, x) :=
P(ωt, x)whereU : Tν ×T

d → R
d and P : Tν ×T

d → R are smooth functions. This leads
to solve a functional equation for U (ϕ, x), P(ϕ, x) of the form{

ω · ∂ϕU − �U +U · ∇U + ∇P = ε f (ϕ, x)

divU = 0 .
(3.1)
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If we take the divergence of the first equation in (3.1), one gets

�P = div
(
ε f −U · ∇U

)
(3.2)

and by projecting on the space of zero divergence vector fields, one gets a closed equation
for U of the form

ω · ∂ϕU − �U + L(U · ∇U ) = εL( f ), U (ϕ, ·) ∈ D0(T
d) (3.3)

wherewe recall the definitions (2.12), (2.13).According to the splitting (2.10) and by applying
the projectors π0, π

⊥
0 to the Eq. (3.3) one gets the decoupled equations

ω · ∂ϕU0(ϕ) = ε f0(ϕ) (3.4)

and
ω · ∂ϕU⊥ − �U⊥ + L(U⊥ · ∇U⊥) = εL( f⊥) . (3.5)

Then, since ω is diophantine (see 1.3) and using that∫
Tν

f0(ϕ) dϕ =
∫
Tν×Td

f (ϕ, x) dϕ dx
(1.2)= 0,

( f̂ (0, 0) = 0) the averaged equation (3.4) can be solved explicitely by setting

U0(ϕ) := (ω · ∂ϕ)−1 f0(ϕ) =
∑


∈Zν\{0}

f̂ (
, 0)

iω · 

ei
·ϕ . (3.6)

By (2.11) and using (1.3), one gets the estimate

‖U0‖σ ≤ εγ −1‖ f0‖σ+ν ≤ εγ −1‖ f ‖σ+ν,0. (3.7)

Remark 3.1 (Non resonance conditions) The diophantine condition (1.3) on the frequency
vector ω is used only to solve the averaged equation (3.4). In order to solve the Eq. (3.5) on
the space of zero average functions (with respect to x) no resonance conditions are required.

We now solve the Eq. (3.5) by means of a fixed point argument. To this end, we need to
analyze some invertibility properties of the linear operator

Lω := ω · ∂ϕ − �. (3.8)

Lemma 3.2 (Invertibility of Lω) Let σ, s ≥ 0, g ∈ Hσ
(
T

ν, Hs
0 (Td ,Rd)

)
and assume that g

has zero divergence. Then there exists a unique u := L−1
ω g ∈ Hσ

(
T

ν, Hs+2
0 (Td ,Rd)

)
with

zero divergence which solves the equation Lωu = g. Moreover

‖u‖σ,s+2 ≤ ‖g‖σ,s . (3.9)

Proof By (2.5), we can write

Lωu(ϕ, x) =
∑

∈Zν

∑
j∈Z3\{0}

(
iω · 
 + | j |2)̂u(
, j)ei
·ϕei j ·x .

Note that since j �= 0, one has that

|iω · 
 + | j |2| =
√

|ω · 
|2 + | j |4 ≥ | j |2 . (3.10)
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Hence, the equation Lωu = g admits the unique solution with zero space average given by

u(ϕ, x) := L−1
ω g(ϕ, x) =

∑

∈Zν

∑
j∈Zd\{0}

ĝ(
, j)

iω · 
 + | j |2 e
i
·ϕei j ·x (3.11)

Clearly if div(g) = 0 and then also div(u) = 0. We now estimate ‖u‖σ,s+2. According to
(2.6), (3.11), one has

‖u‖2σ,s+2 =
∑

∈Zν

∑
j∈Zd\{0}

〈
〉2σ 〈 j〉2(s+2) |̂g(
, j)|2
|iω · 
 + | j |2|2

(3.10)≤
∑

∈Zν

∑
j∈Zd\{0}

〈
〉2σ | j |2(s+2)| j |−4 |̂g(
, j)|2 = ‖g‖2σ,s

which proves the claimed statement.

We now implement the fixed point argument for the Eq. (3.5) (to simplify notations we write
U instead of U⊥). For any σ, s, R ≥ 0, we define the ball

Bσ,s(R) :=
{
U ∈ Hσ

(
T

ν, Hs
0 (Td ,Rd)

)
: div(U ) = 0 , ‖U‖σ,s ≤ R

}
. (3.12)

and we define the nonlinear operator

�(U ) := L−1
ω L

(
ε f −U · ∇U

)
, U ∈ Bσ,s(R) . (3.13)

The following Proposition holds.

Proposition 3.3 (Contraction for �) Let σ > ν/2, s > d/2 + 1, f ∈ CN (Tν × T
d ,Rd),

N > σ + s − 2. Then there exists a constant C∗ = C∗( f , σ, s) > 0 large enough and ε0 =
ε0( f , σ, s) ∈ (0, 1) small enough, such that for any ε ∈ (0, ε0), the map � : Bσ,s(C∗ε) →
Bσ,s(C∗ε) is a contraction.

Proof Let U ∈ Bσ,s(C∗ε). We apply Lemmata 2.4-(i), 3.2 from which one immediately
deduces that ∫

T3
�(U ) dx = 0, div

(
�(U )

) = 0 . (3.14)

Moreover

‖�(U )‖σ,s =
∥∥∥L−1

ω L
(
ε f −U · ∇U

)∥∥∥
σ,s

(2.18),(3.9)
�

∥∥∥ε f −U · ∇U
∥∥∥

σ,s−2

� ε‖ f ‖σ,s−2 + ‖U · ∇U‖σ,s−1 .

Note that since f ∈ CN with N > σ + s − 2, one has that ‖ f ‖σ,s−2 � ‖ f ‖CN . In view of
Lemma 2.4-(i i), using that σ > ν/2, s − 1 > d/2, one gets that

‖�(U )‖σ,s ≤ C( f , s, σ )
(
ε + ‖U‖σ,s−1‖U‖σ,s

) ≤ C( f , s, σ )
(
ε + ‖U‖2σ,s

)
for some constant C( f , s, σ ) > 0. Using that ‖U‖σ,s ≤ C∗ε, one gets that

‖�(U )‖σ,s ≤ C( f , s, σ )ε + C( f , s, σ )C2∗ε2 ≤ C∗ε

provided

C∗ ≥ 2C( f , s, σ ) and ε ≤ 1

2C( f , s, σ )C∗
.
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Hence � : Bσ,s(C∗ε) → Bσ,s(C∗ε). Now let U1,U2 ∈ Bσ,s(C∗ε) and we estimate

�(U1) − �(U2) = L−1
ω L

(
U1 · ∇U1 −U2 · ∇U2

)
.

One has that

‖�(U1) − �(U2)‖σ,s ≤
∥∥∥L−1

ω L
(
(U1 −U2) · ∇U1

)∥∥∥
σ,s

+
∥∥∥L−1

ω L
(
U2 · ∇(U1 −U2)

)∥∥∥
σ,s

(2.18),(3.9) ,Lemma 2.4
�s,σ ‖U1 −U2‖σ,s‖U1‖σ,s + ‖U1 −U2‖σ,s‖U2‖σ,s

≤ C(s, σ )
(‖U1‖σ,s + ‖U2‖σ,s

)‖U1 −U2‖σ,s

for some constant C(s, σ ) > 0. Since U1,U2 ∈ Bσ,s(C∗ε), one then has that

‖�(U1) − �(U2)‖σ,s ≤ 2C(s, σ )C∗ε‖U1 −U2‖σ,s ≤ 1

2
‖U1 −U2‖σ,s

provided ε ≤ 1
4C(s,σ )C∗ . Hence � is a contraction.

3.1 Proof of Theorem 1.1

Proposition 3.3 implies that for σ > ν/2, s > d
2 + 1, there exists a unique U⊥ ∈

Hσ (Tν, Hs
0 (Td ,Rd)), ‖U⊥‖σ,s �σ,s ε which is a fixed point of the map � defined in

(3.13). We fix σ := ν/2+ 2 and N > 3ν
2 + s + 2. By the Sobolev embedding property (2.8),

since σ − 1 > ν/2, one gets that

U⊥ ∈ C1b
(
T

ν, Hs
0 (Td ,Rd)

)
, ‖U⊥‖C1

ϕH
s
x

�s ε (3.15)

and U⊥ is a solution of the Eq. (3.5). Similarly, by recalling (3.4), (3.6), (3.7), one gets that

U0 ∈ C1(Tν,Rd), ‖U0‖C1
ϕ

≤ εγ −1‖ f ‖ 3ν
2 +2,0 ≤ εγ −1‖ f ‖CN ,

∫
Tν

U0(ϕ) dϕ = 0

(3.16)

and U0 is a solution of the Eq. (3.4). Hence U = U0 + U⊥ ∈ C1
(
T

ν, Hs(Td ,Rd)
)
is a

solution of (3.3) and it satisfies
∫
Tν×Td U (ϕ, x) dϕ dx = 0. The unique solution with zero

average in x of the Eq. (3.2) is given by

P := (−�)−1div
(
U · ∇U − ε f

)
.

Hence, P ∈ C0b
(
T

ν, Hs
0 (Td ,Rd)

)
and

‖P‖C0
ϕH

s
x

(2.8),σ=ν/2+2
� ‖P‖σ,s �σ,s ε‖ f ‖σ,s−1 + ‖U · ∇U‖σ,s−1

Lemma 2.4
�σ,s ε‖ f ‖σ,s−1 + ‖U‖2σ,s .

The claimed estimate on P then follows since ‖ f ‖σ,s−1 � ‖ f ‖CN , ‖U‖σ,s ≤ C∗ε. Note that
if f has zero average in x , one has that

f0(ϕ) = π0 f (ϕ) = 1

(2π)d

∫
Td

f (ϕ, x) dx = 0 , ∀ϕ ∈ T
ν .
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The Eq. (3.4) reduces to ω · ∂ϕU0 = 0. Hence the only solution U = U0 +U⊥ of (3.3) with
zero average in x is the one where we choose U0 = 0 and hence U = U⊥. The claimed
statement has then been proved.

4 Orbital and Asymptotic Stability

We now want to study the Cauchy problem for the Eq. (1.1) for initial data which are close
to the quasi-periodic solution (uω, pω), where

uω(t, x) := U (ωt, x), pω(t, x) := P(ωt, x) (4.1)

and the periodic functions U ∈ C1
(
T

ν, Hs(Td ,Rd)
)
, P ∈ C0

(
T

ν, Hs
0 (Td ,Rd)

)
are given

by Theorem 1.1. We then look for solutions which are perturbations of the quasi-periodic
ones (uω, pω), namely we look for solutions of the form

u(t, x) = uω(t, x) + v(t, x), p(t, x) = pω(t, x) + q(t, x) . (4.2)

Plugging the latter ansatz into the Eq. (1.1), one obtains an equation for v(t, x), q(t, x) of
the form {

∂tv − �v + uω · ∇v + v · ∇uω + v · ∇v + ∇q = 0

div(v) = 0 .
(4.3)

If we take the divergence in the latter equation we get the equation for the pressure q(t, x)

− �q = div
(
uω · ∇v + v · ∇uω + v · ∇v

)
. (4.4)

By using the Leray projector defined in (2.13), we then get a closed equation for v of the
form {

∂tv − �v + L
(
uω · ∇v + v · ∇uω + v · ∇v

)
= 0

div(v) = 0 .
(4.5)

We prove the following

Proposition 4.1 Let s > d/2 + 1, α ∈ (0, 1). Then there exists δ = δ(s, α, d, ν) ∈ (0, 1)
small enough and C = C(s, α, d, ν) > 0 large enough, such that for any ε ∈ (0, δ) and for
any initial datum v0 ∈ Hs

0 (Td ,Rd) with ‖v0‖Hs
x

≤ δ, there exists a unique global solution

v ∈ C0b
(
[0,+∞), Hs

0 (Td ,Rd)
)

∩ C1b
(
[0,+∞), Hs−2

0 (Td ,Rd)
)

(4.6)

of the Eq. (4.5) which satisfies

‖v(t, ·)‖Hs
x
, ‖∂tv(t, ·)‖Hs−2

x
≤ Cδe−αt , ∀t ≥ 0 . (4.7)

The Proposition above will be proved by a fixed point argument in some weighted Sobolev
spaces which take care of the decay in time of the solutions we are looking for. In the next
section we shall exploit some decay estimates of the linear heat propagator which will be
used in the proof of our result.
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4.1 Dispersive Estimates for the Heat Propagator

In this section we analyze some properties of the heat propagator. We recall that the heat
propagator is defined as follows. Consider the Cauchy problem for the heat equation{

∂t u − �u = 0

u(0, x) = u0(x),
u0 ∈ Hs

0 (Td ,Rd) . (4.8)

It is well known that there exists a unique solution

u ∈ C0b
(
[0,+∞), Hs

0 (Td ,Rd)
)

∩ C1b
(
[0,+∞), Hs−2

0 (Td ,Rd)
)

which can be written as u(t, x) := et�u0(x), namely

u(t, x) = et�u0(x) =
∑

ξ∈Zd\{0}
e−t |ξ |2 û0(ξ)eix ·ξ . (4.9)

Lemma 4.2 (i) Let u0 ∈ Hs
0 (Td ,Rd). Then

‖et�u0‖Hs
x

≤ e−t‖u0‖Hs
x
, ∀t ≥ 0 . (4.10)

(ii) Let u0 ∈ Hs−1
0 (Td ,Rd). Then, for any integer n ≥ 1 and for any α ∈ (0, 1),

‖et�u0‖Hs
x

�n t−
n
2 (1−α)−

n
2 e−αt‖u0‖Hs−n

x
�n t−

n
2 (1−α)−

n
2 e−αt‖u0‖Hs−1

x
, ∀t > 0 .

(4.11)

Proof The item (i) follows by (4.9), using that e−t |ξ |2 ≤ e−t for any t ≥ 0, ξ ∈ Z
d\{0},

since |ξ |2 ≥ 1. We now prove the item (i i). Let n ∈ N, α ∈ (0, 1). One has

‖et�u0‖2Hs
x

=
∑

ξ∈Zd\{0}
|ξ |2se−2t |ξ |2 |̂u0(ξ)|2

=
∑

ξ∈Zd\{0}
e−2αt |ξ |2 |ξ |2(s−n)|ξ |2ne−2(1−α)t |ξ |2 |̂u0(ξ)|2 .

(4.12)

Using that for any ξ ∈ Z
d\{0}, t ≥ 0, e−2αt |ξ |2 ≤ e−2αt , by (4.12), one gets that

‖et�u0‖2Hs
x

≤ e−2αt
∑

ξ∈Zd\{0}
|ξ |2(s−n)|ξ |2ne−2(1−α)t |ξ |2 |̂u0(ξ)|2 . (4.13)

By Lemma A.1 (applied with ζ = 2(1 − α)t), one has that

sup
ξ∈Zd\{0}

|ξ |2ne−2(1−α)t |ξ |2 ≤ sup
y≥0

yne−2(1−α)t y ≤ C(n)

(1 − α)ntn

for some constant C(n) > 0. Therefore by (4.13), one gets that

‖et�u0‖2Hs
x

�n t−ne−2αt (1 − α)−n
∑

ξ∈Zd\{0}
|ξ |2(s−n) |̂u0(ξ)|2

�n t−ne−2αt (1 − α)−n‖u0‖2Hs−n
x

.

The second inequality in (4.11) clearly follows since ‖ · ‖Hs−n
x

≤ ‖ · ‖Hs−1
x

for n ≥ 1.
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We fix α ∈ (0, 1) and for any s ≥ 0, we define the space

Es :=
{
u ∈ C0b

(
[0,+∞), Hs

0 (Td ,Rd)
)

: ‖u‖Es := sup
t≥0

eαt‖u(t)‖Hs
x

}
. (4.14)

Clearly
‖ · ‖Es ≤ ‖ · ‖Es′ , ∀s ≤ s′ . (4.15)

The following elementary lemma holds:

Lemma 4.3 (i) Let u ∈ Es . Then
‖u‖C0

t Hs
x

� ‖u‖Es and ‖L(u)‖Es � ‖u‖Es ,

‖u(t)‖Hs
x

≤ e−αt‖u‖Es , ∀t ≥ 0 .
(4.16)

(ii) Let s > d/2, u ∈ Es , v ∈ C0b
(
[0,+∞), Hs+1(Td ,Rd)

)
, div(u) = 0. Then the product

u · ∇v ∈ Es and
‖u · ∇v‖Es �s ‖u‖Es‖v‖C0

t H
s+1
x

. (4.17)

(iii) Let s > d/2, u ∈ C0b
(
[0,+∞), Hs(Td ,Rd)

)
, div(u) = 0 and v ∈ Es+1. Then the

product u · ∇v ∈ Es and
‖u · ∇v‖Es �s ‖u‖C0

t Hs
x
‖v‖Es+1 . (4.18)

(iv) Let s > d/2, u ∈ Es , div(u) = 0, v ∈ Es+1. Then u · ∇v ∈ Es and
‖u · ∇v‖Es �s ‖u‖Es‖v‖Es+1 . (4.19)

Proof The item (i) is very elementary and it follows in a straightforwardway by the definition
(4.14) and by recalling the estimate (2.18) on the Leray projector L. We prove the item (i i).
By Lemma 2.4-(i), one has that u(t) · ∇v(t) has zero average in x . Moreover

u · ∇v =
(
u · ∇v1, . . . , u · ∇vd

)
therefore, since s > d/2, by Lemma 2.1 and using (2.1) one has that for any t ∈ [0,+∞)

‖u(t) · ∇v(t)‖Hs
x

�s ‖u(t)‖Hs
x
‖v(t)‖Hs+1

x
implying that

eαt‖u(t) · ∇v(t)‖Hs
x

�s e
αt‖u(t)‖Hs

x
‖v(t)‖Hs+1

x
�s

(
sup
t≥0

eαt‖u(t)‖Hs
x

)(
sup
t≥0

‖v(t)‖Hs+1
x

)
�s ‖u‖Es‖v‖C0

t H
s+1
x

.

(4.20)
Passing to the supremum over t ≥ 0 in the left hand side of (4.20), we get the claimed
statement. The item (i i i) follows by similar arguments and the item (iv) follows by applying
items (i) and (i i).

We now prove some estimates for the heat propagator et� in the space Es .
Lemma 4.4 Let s ≥ 0, u0 ∈ Hs

0 (Td ,Rd). Then ‖et�u0‖Es �α ‖u0‖Hs
x
.

Proof We have to estimate uniformly w.r. to t ≥ 0, the quantity eαt‖et�u0‖Hs
x
. For t ∈ [0, 1],

since eαt ≤ eα
α<1≤ e and by applying Lemma 4.2-(i), one gets that

eαt‖et�u0‖Hs
x

� ‖et�u0‖Hs
x

� ‖u0‖Hs
x
, ∀t ∈ [0, 1] . (4.21)
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For t > 1, by applying Lemma 4.2-(i i) (for n = 1), one gets that

eαt‖et�u0‖Hs
x

�α t−
1
2 ‖u0‖Hs−1

x
�α ‖u0‖Hs

x
, ∀t > 1 . (4.22)

Hence the claimed statement follows by (4.21), (4.22) passing to the supremum over t ≥ 0.

The main result of this section is the following Proposition

Proposition 4.5 Let s ≥ 1, f ∈ Es−1 and define

u(t) ≡ u(t, ·) :=
∫ t

0
e(t−τ)� f (τ, ·) dτ . (4.23)

Then u ∈ Es and
‖u‖Es �α ‖ f ‖Es−1 . (4.24)

The proof is split in several steps. The first step is to estimate the integral in (4.23) for any
t ∈ [0, 1].
Lemma 4.6 Let t ∈ [0, 1], f ∈ Es−1 and u defined by (4.23). Then

‖u(t)‖Hs
x

�α ‖ f ‖C0
t H

s−1
x

.

Proof Let t ∈ [0, 1]. Then

‖u(t)‖Hs
x

≤
∫ t

0

∥∥∥e(t−τ)� f (τ, ·)
∥∥∥
Hs
x

dτ
(4.11)
�α

∫ t

0
e− t−τ

2
‖ f (τ, ·)‖Hs−1

x√
t − τ

dτ

e− t−τ
2 ≤1

�α

∫ t

0

1√
t − τ

dτ‖ f ‖C0
t H

s−1
x

.

(4.25)

By making the change of variables z = t − τ , one gets that∫ t

0

1√
t − τ

dτ =
∫ t

0

1√
z
dz

t≤1≤
∫ 1

0

1√
z
dz = 2

and hence in view of (4.25), one gets ‖u(t)‖Hs
x

�α ‖ f ‖C0
t H

s−1
x

for any t ∈ [0, 1], which is
the claimed stetement.

For t > 1, we split the integral term in (4.23) as

∫ t

0
e(t−τ)� f (τ, ·) dτ =

∫ t− 1
2

0
e(t−τ)� f (τ, ·) dτ +

∫ t

t− 1
2

e(t−τ)� f (τ, ·) dτ

and we estimate separately the two terms in the latter formula. More precisely the first term
is estimated in Lemma 4.7 and the second one in Lemma 4.8.

Lemma 4.7 Let t > 1. Then

∥∥∥ ∫ t− 1
2

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

�α e−αt‖ f ‖Es−1
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Proof Let t > 1. One then has

∥∥∥ ∫ t− 1
2

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

≤
∫ t− 1

2

0

∥∥∥e(t−τ)� f (τ, ·)
∥∥∥
Hs
x

dτ

(4.11)
�n,α

∫ t− 1
2

0
e−α(t−τ) 1

(t − τ)
n
2
‖ f (τ, ·)‖Hs−1

x
dτ

�n,α e−αt
∫ t− 1

2

0

1

(t − τ)
n
2
eατ‖ f (τ, ·)‖Hs−1

x
dτ

�n,α e−αt
( ∫ t− 1

2

0

dτ

(t − τ)
n
2

)
sup
τ≥0

eατ‖ f (τ, ·)‖Hs−1
x

.

(4.26)
By choosing n = 4 and by making the change of variables z = t − τ , on gets that

∫ t− 1
2

0

dτ

(t − τ)
n
2

=
∫ t− 1

2

0

dτ

(t − τ)2
=

∫ t

1
2

dz

z2
≤

∫ +∞
1
2

dz

z2
< ∞ .

The latter estimate, together with the estimate (4.26) imply the claimed statement.

Lemma 4.8 Let t > 1. Then

∥∥∥ ∫ t

t− 1
2

e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

�α e−αt‖ f ‖Es−1 .

Proof One has

∥∥∥ ∫ t

t− 1
2

e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

≤
∫ t

t− 1
2

∥∥∥e(t−τ)� f (τ, ·)
∥∥∥
Hs
x

dτ

(4.11)
�α e−αt

∫ t

t− 1
2

1√
t − τ

eατ‖ f (τ, ·)‖Hs−1
x

dτ

�α e−αt
∫ t

t− 1
2

dτ√
t − τ

(
sup
τ≥0

eατ‖ f (τ, ·)‖Hs−1
x

)
.

(4.27)

By making the change of variables z = t − τ , one gets

∫ t

t− 1
2

dτ√
t − τ

=
∫ 1

2

0

dz√
z

= √
2 .

The latter estimate, together with (4.27) imply the claimed statement.

Proof of Proposition 4.5 For any t ∈ [0, 1], since eαt ≤ eα
α<1≤ e, by Lemma 4.6, one has

that

eαt
∥∥∥ ∫ t

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

�
∥∥∥ ∫ t

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

�α ‖ f ‖C0
t H

s−1
x

(4.16)
�α ‖ f ‖Es−1 .

(4.28)
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For any t > 1, by applying Lemmata 4.7, 4.8, one gets

eαt
∥∥∥ ∫ t

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

≤ eαt
∥∥∥ ∫ t− 1

2

0
e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

+ eαt
∥∥∥ ∫ t

t− 1
2

e(t−τ)� f (τ, ·) dτ

∥∥∥
Hs
x

�α ‖ f ‖Es−1 .

(4.29)

The claimed statement then follows by (4.28), (4.29) and passing to the supremum over
t ∈ [0,+∞).

4.2 Proof of Proposition 4.1

The Proposition 4.1 is proved by a fixed point argument. For any δ > 0 and s ≥ 0, we define
the ball

Bs(δ) :=
{
v ∈ Es : div(v) = 0, ‖v‖Es ≤ δ

}
(4.30)

and for any v ∈ Bs(δ), we define the map

�(v) := et�v0 +
∫ t

0
e(t−τ)�N (v)(τ, ·) dτ ,

N (v) := −L
(
uω · ∇v + v · ∇uω + v · ∇v

)
.

(4.31)

Proposition 4.9 Let s > d/2 + 1, α ∈ (0, 1). Then there exists δ = δ(s, α, ν, d) ∈ (0, 1)
small enough such that for any ε ∈ (0, δ), � : Bs(δ) → Bs(δ) is a contraction.

Proof Since v0 has zero divergence and zero average, then clearly by (4.9), div
(
et�v0

) = 0,∫
Td et�v0(x) dx = 0 . Now let v(t, x) be a function with zero average and zero divergence.

Clearly div
(
N (v)

)
= 0 since in the definition ofN (v) in (4.31), there is the Leray projector.

Moreover using that div(v) = div(uω) = 0, by Lemma 2.4-(i), one gets N (v) has zero
average and then by (4.9) also

∫ t
0 e

(t−τ)�N (v)(τ, ·) dτ has zero average. Hence, we have
shown that div(�(v)) = 0 and

∫
Td �(v) dx = 0. Let now ‖v‖Es ≤ δ.We estimate ‖�(v)‖Es .

By recalling (4.31), Lemma 4.4, Proposition 4.5 and Lemma 4.3, one has

‖�(v)‖Es
(4.31)≤ ‖et�v0‖Es +

∥∥∥ ∫ t

0
e(t−τ)�N (v)(τ, ·) dτ

∥∥∥Es
�α ‖v0‖Hs

x
+ ‖N (v)‖Es−1

�s,α ‖v0‖Hs
x

+ ‖uω‖C0
t Hs

x
‖v‖Es + ‖v‖2Es .

(4.32)

By the estimates of Theorem 1.1, by the Definition (4.1) and by applying Lemma 2.3, one
has

uω ∈ C0b
(
R, Hs(Td ,Rd)

)
and ‖uω‖C0

t Hs
x

�s ε
ε≤δ

�s δ . (4.33)

Since v ∈ Bs(δ), the estimate (4.32) implies that

‖�(v)‖Es ≤ C(s, α)
(
‖v0‖Hs

x
+ δ2

)
. (4.34)

Hence ‖�(v)‖Es ≤ δ provided

C(s, α)‖v0‖Hs
x

≤ δ

2
, C(s, α)δ ≤ 1

2
.
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These conditions are fullfilled by taking δ small enough and‖v0‖Hs
x

� δ.Hence� : Bs(δ) →
Bs(δ). Now let v1, v2 ∈ Bs(δ). We need to estimate

�(v1) − �(v2) =
∫ t

0
e(t−τ)�

(
N (v1) − N (v2)

)
(τ, ·) dτ . (4.35)

By (4.31)

‖N (v1) − N (v2)‖Es−1 ≤
∥∥∥L(

uω · ∇(v1 − v2)
)∥∥∥Es−1

+
∥∥∥L(

(v1 − v2) · ∇uω

)∥∥∥Es−1

+
∥∥∥L(

(v1 − v2) · ∇v1

)∥∥∥Es−1
+

∥∥∥L(
v2 · ∇(v1 − v2)

)∥∥∥Es−1

(4.16)
�

∥∥∥uω · ∇(v1 − v2)

∥∥∥Es−1
+

∥∥∥(v1 − v2) · ∇uω

∥∥∥Es−1

+
∥∥∥(v1 − v2) · ∇v1

∥∥∥Es−1
+

∥∥∥v2 · ∇(v1 − v2)

∥∥∥Es−1

(4.17),(4.18),(4.19)
�s

(
‖uω‖C0

t Hs
x

+ ‖v1‖Es + ‖v2‖Es
)
‖v1 − v2‖Es .

(4.36)
Hence, (4.33) and using that v1, v2 ∈ Bs(δ) (‖v1‖Es , ‖v2‖Es ≤ δ) and the estimate (4.36)
imply that

‖N (v1) − N (v2)‖Es−1 �s δ‖v1 − v2‖Es . (4.37)

By (4.35), one gets that

‖�(v1) − �(v2)‖Es
Proposi tion 4.5

�s,α ‖N (v1) − N (v2)‖Es−1

(4.37)≤ C(s, α)δ‖v1 − v2‖Es
(4.38)

for some constant C(s, α) > 0. Therefore

‖�(v1) − �(v2)‖Es ≤ 1

2
‖v1 − v2‖Es

provided δ ≤ 1
2C(s,α)

. The claimed statement has then been proved.

Proof of Proposition 4.1 concluded.By Proposition 4.9, using the contraction map-
ping theorem there exists a unique v ∈ Bs(δ) which is a fixed point of the map � in (4.31).
By the functional equation v = �(v), one deduces in a standard way that

v ∈ C1b
(
[0,+∞), Hs−2

0 (Td ,Rd)
)

and hence v is a solution of the Eq. (4.5). By (4.16) and using the trivial fact that ‖�v‖Es−2 ≤
‖v‖Es

‖∂tv‖Es−2 � ‖v‖Es + ‖uω · ∇v‖Es−2 + ‖v · ∇uω‖Es−2 + ‖v · ∇v‖Es−2

(4.17)−(4.19)
�s ‖v‖Es

(
1 + ‖uω‖C0

t Hs
x

+ ‖v‖Es
)

.
(4.39)

Therefore using that v ∈ Bs(δ) (‖v‖Es ≤ δ) and by (4.33), ‖uω‖C0
t Hs

x
�s δ, one gets, for δ

small enough, the estimate ‖∂tv‖Es−2 �s δ and the claimed statement follows by recalling
(4.16).
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4.3 Proof of Theorem 1.2

In view of Proposition 4.1, it remains only to solve the Eq. (4.4) for the pressure q(t, x). The
only solution with zero average of this latter equation is given by

q := (−�)−1
(
div

(
uω · ∇v + v · ∇uω + v · ∇v

))
. (4.40)

Using that ‖(−�)−1diva‖Es � ‖a‖Es−1 for any a ∈ Es , one gets the inequality

‖q‖Es � ‖uω · ∇v‖Es−1 + ‖v · ∇uω‖Es−1 + ‖v · ∇v‖Es−1 . (4.41)

Hence arguing as in (4.39), one deduces the estimate ‖q‖Es �s δ. The claimed estimate on q
then follows by recalling (4.16) and the proof is concluded (recall that by (4.2), v = u − uω,
q = p − pω).
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A Appendix

Lemma A.1 Let n ∈ N, ζ > 0 and f : [0,+∞] → [0,+∞] defined by f (y) := yne−ζ y .
Then

maxy≥0 f (y) = (n/ζ )ne−n

Proof One has that f ≥ 0 and

f (0) = 0, lim
y→+∞ f (y) = 0 .

Moreover

f ′(y) = yn−1e−y
(
n − ζ y

)
therefore f admits a global maximum at y = n/ζ . This implies that

maxy≥0 f (y) = f (n/ζ ) = (n/ζ )ne−n

and the lemma follows.

123

http://creativecommons.org/licenses/by/4.0/


Journal of Dynamics and Differential Equations (2021) 33:1341–1362 1361

References

1. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth.
Invent. Math. 214(2), 739–911 (2018)

2. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy
equation. Math. Ann. 359, 471–536 (2014)

3. Baldi, P., Montalto, R.: Quasi-periodic incompressible Euler flows in 3D. Preprint arXiv:2003.14313
(2020)

4. Bambusi, D., Grebert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear
Schrödinger Equations. JEMS (to appear). Preprint arXiv:1706.09708 (2017)

5. Bambusi, D., Grebert, B., Maspero, A., Robert, D.: Reducibility of the quantum Harmonic oscillator in
d-dimensions with polynomial time dependent perturbation. Anal. PDEs 11(3), 775–799 (2018)

6. Bambusi, D., Langella, B., Montalto, R.: Reducibility of non-resonant transport equation on T
d with

unbounded perturbations. Ann. Inst. Henri Poincaré 20, 1893–1929 (2019). https://doi.org/10.1007/
s00023-019-00795-2

7. Berti, M.: KAM for PDEs. Boll. Unione Mat. Ital. 9, 115–142 (2016)
8. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative

potential. Eur. J. Math. 15, 229–286 (2013)
9. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multi-

plicative potential. Nonlinearity 25(9), 2579–2613 (2012)
10. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW

and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. 334(3), 1413–1454
(2015)

11. Berti, M.,Montalto, R.: Quasi-periodic standing wave solutions of gravity capillary standing water waves.
Mem. Am. Math. Soc. 263, 1273 (2019)

12. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations.
Ann. Math. 148, 363–439 (1998)

13. Craig, W., Eugene Wayne, C.: Newton’s method and periodic solutions of nonlinear wave equations.
Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

14. Calleja, R., Celletti, A., Corsi, L., de la Llave, R.: Response solutions for quasi-periodically forced,
dissipative wave equations. SIAM J. Math Anal. 49(4), 3161–3207 (2017)

15. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on T
d . Nonlinearity

31, 5075–5109 (2018). https://doi.org/10.1088/1361-6544/aad6fe
16. Eliasson, H.L., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time poten-

tials. Commun. Math. Phys. 286(1), 125–135 (2009)
17. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equa-

tions. J. Differ. Equ. 259(7), 3389–3447 (2015)
18. Feola, R., Giuliani, F., Montalto, R., Procesi, M.: Reducibility of first order linear operators on tori via

Moser’s theorem. J. Funct. Anal. 276, 932–970 (2019)
19. Galdi, G.P.: Existence and uniqueness of time-periodic solutions to the Navier–Stokes equations in the

whole plane. Discret. Contin. Dyn. Syst. Ser. S 6(5), 1237–1257 (2013)
20. Galdi, P.G.: On time-periodic flow of a viscous liquid past a moving cylinder. Arch. Ration. Mech. Anal.

210(2), 451–498 (2013)
21. Galdi, G.P., Silvestre, A.L.: Existence of time-periodic solutions to the Navier–Stokes equations around

a moving body. Pac. J. Math. 223(2), 251–267 (2006)
22. Galdi, G.P., Kyed, M.: Time-periodic solutions to the Navier–Stokes equations in the three-dimensional

whole-space with a drift term: asymptotic profile at spatial infinity. Contemp. Math. (2016) (to appear)
23. Galdi, G.P., Hishida, T.: Attainability of time-periodic flow of a viscous liquid past an oscillating body.

Preprint arXiv. 2001.07292 (2020)
24. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional

cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)
25. Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity.

Arch. Ration. Mech. Anal. 177(3), 367–478 (2005)
26. Liu, J., Cong, H., Yuan, X.: Stability of KAM tori for nonlinear Schrödinger equation. Mem. Am. Math.

Soc. 239, 1134 (2016)
27. Maremonti, P.: Existence and stability of time-periodic solutions to the Navier–Stokes equations in the

whole space. Nonlinearity 4(2), 503–529 (1991)
28. Maremonti, P., Padula, M.: Existence, uniqueness, and attainability of periodic solutions of the Navier–

Stokes equations in exterior domains. J. Math. Sci. (N.Y.) 93, 719–746 (1999)

123

http://arxiv.org/abs/2003.14313
http://arxiv.org/abs/1706.09708
https://doi.org/10.1007/s00023-019-00795-2
https://doi.org/10.1007/s00023-019-00795-2
https://doi.org/10.1088/1361-6544/aad6fe
http://arxiv.org/abs/2001.07292


1362 Journal of Dynamics and Differential Equations (2021) 33:1341–1362

29. Montalto, R.: A reducibility result for a class of linear wave equations on T
d . Int. Math. Res. Not. 6,

1788–1862 (2019). https://doi.org/10.1093/imrn/rnx167
30. Lions, J.L.:Quelquesmethodes de resolution des problemes aux limites non lineares.Gounod andGautier-

Villars, Paris (1969)
31. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded pertur-

bations. Commun. Math. Phys. 307(3), 629–673 (2011)
32. Kyed, M.: Existence and regularity of time-periodic solutions to the three-dimensional Navier–Stokes

equations. Nonlinearity 27(12), 2909–2935 (2014)
33. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spec-

trum. Funct. Anal. Appl. 21, 192–205 (1987)
34. Kuksin, S.: A KAM theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys. 10(3), 1–64

(1998)
35. Procesi, C., Procesi, M.: A KAM algorithm for the completely resonant nonlinear Schrödinger equation.

Adv. Math. 272, 399–470 (2015)
36. Prodi, G.: Qualche risultato riguardo alle equazioni di Navier–Stokes nel caso bidimensionale. Rend.

Sem. Mat. Univ. Padova 30, 1–15 (1960)
37. Prouse, G.: Soluzioni periodiche dell–equazione di Navier–Stokes. Atti Accad. Naz. Lincei Rend. Cl.

Sci. Fis. Mat. Nat. 35(8), 443–447 (1963)
38. Prouse, G.: Soluzioni quasi-periodiche dell-equazione differenziale di Navier–Stokes in due dimensioni.

Rend. Sem. Mat. Univ. Padova 33, 186–212 (1963)
39. Salvi, R.: On the existence of periodic weak solutions on the Navier–Stokes equations in exterior regions

with periodically moving boundaries. In: Sequeira, A. (ed.) Navier–Stokes Equations and Related Non-
linear Problems. Springer, Boston (1995)

40. Serrin, J.: A note on the existence of periodic solutions of the Navier–Stokes equations. Arch. Ration.
Mech. Anal. 3, 120–122 (1959)

41. Yudovich, V.I.: Periodic motions of a viscous incompressible fluid. Sov. Math. Dokl. 1, 168–172 (1960)
42. Wang, F., de la Llave, R.: Response solutions to quasi-periodically forced systems, even to possibly ill-

posed PDEs, with strong dissipation and any frequency vectors. SIAM J. Math. Anal. 52(4), 3149–3191
(2020)

43. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Com-
mun. Math. Phys. 127(3), 479–528 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1093/imrn/rnx167

	The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions
	Abstract
	1 Introduction and Main Results
	2 Functional Spaces
	2.1 Leray Projector and Some Elementary Properties of the Navier–Stokes Equation

	3 Construction of Quasi-Periodic Solutions
	3.1 Proof of Theorem 1.1

	4 Orbital and Asymptotic Stability
	4.1 Dispersive Estimates for the Heat Propagator
	4.2 Proof of Proposition 4.1
	4.3 Proof of Theorem 1.2

	Acknowledgements
	A Appendix
	References




