We study the reducibility of a linear Schrodinger equation subject to a small unbounded almost periodic perturbation which is analytic in time and space. Under appropriate assumptions on the smallness, analyticity, and on the frequency of the almost periodic perturbation, we prove that such an equation is reducible to constant coefficients via an analytic almost periodic change of variables. This implies control of both Sobolev and analytic norms for the solution of the corresponding Schrödinger equation for all times.

Linear Schrödinger equation with an almost periodic potential / R. Montalto, M. Procesi. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 53:1(2021), pp. 386-434. [10.1137/20M1320742]

Linear Schrödinger equation with an almost periodic potential

Montalto R.;
2021

Abstract

We study the reducibility of a linear Schrodinger equation subject to a small unbounded almost periodic perturbation which is analytic in time and space. Under appropriate assumptions on the smallness, analyticity, and on the frequency of the almost periodic perturbation, we prove that such an equation is reducible to constant coefficients via an analytic almost periodic change of variables. This implies control of both Sobolev and analytic norms for the solution of the corresponding Schrödinger equation for all times.
Almost periodic potentials; KAM-reducibility; Linear Schrödinger equations
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Article (author)
File in questo prodotto:
File Dimensione Formato  
1910.12300.pdf

accesso aperto

671.91 kB Adobe PDF Visualizza/Apri
20m1320742.pdf

accesso aperto

656.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/859764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact