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LINEAR SCHRODINGER EQUATION WITH AN ALMOST
PERIODIC POTENTIAL*
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Abstract. We study the reducibility of a linear Schrodinger equation subject to a small un-
bounded almost periodic perturbation which is analytic in time and space. Under appropriate as-
sumptions on the smallness, analyticity, and on the frequency of the almost periodic perturbation,
we prove that such an equation is reducible to constant coefficients via an analytic almost periodic
change of variables. This implies control of both Sobolev and analytic norms for the solution of the
corresponding Schrédinger equation for all times.
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1. Introduction. The problem of control of Sobolev norms for linear Schrodin-
ger operators on a torus with smooth time dependent potential has been studied by
various authors. Groundbreaking results were proved by Bourgain in [12] in the case
of quasi-periodic bounded potentials with a Diophantine frequency and then in [13]
for general time dependent potentials. The main result was an upper bound on the
growth in time of the Sobolev norm, logarithmic in time in [12] and polynomial in
[13]. Such results were generalized to unbounded potentials in [17], [34], [35], [8], [5],
[36], [37], [9], [25].

The main feature of such results is that they are very general, require little or no
conditions on the time dependence of the potential, and can often also be applied in
nonperturbative settings. At this level of generality such results are in fact optimal,
as shown in [13]. See also [33], [27] for examples of growth.

A parallel point of view is to study the reducibility of Schrédinger equations with
small quasi-periodic potentials by requiring stronger nonresonance conditions on the
frequency; see [18]. We recall that a first order linear differential equation @ = L(t)u
is said to be reducible if there exists a (uniformly bounded) time dependent linear
operator which conjugates it to an equation v = Dwv, where D is time independent
and diagonal (or block diagonal). Thus one gets a uniform control in time of the
Sobolev norms to the price of restricting to small quasi-periodic potentials with rather
involuted nonresonance conditions on the frequency. We remark that reducibility is a
key argument in KAM for nonlinear PDEs. This is a strong motivation for studying
reducibility for linear PDEs. Conversely, many KAM results can be adapted to the
reducibility setting.

As can be expected, the (block) diagonalization algorithm relies on lower bounds
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on the difference of distinct eigenvalues (the spectral gaps) as well as on a strong
control on their possible multiplicity. Indeed, the first results were for bounded po-
tentials in the case of Dirichlet boundary conditions on [0, 7], where the eigenvalues
are simple (see, for instance, [30], [38], [39], [32], [31]). The last ten years have seen
considerable progress in this field, particularly in the case of unbounded potentials.
The first results were in [28] in the case of periodic potentials and [1], [2] for the
quasi-periodic case. Regarding Schrédinger equations we mention [24], [21], [3], [4].
Note that all of the preceding papers deal with Sobolev stability; generalizing to the
analytic case, especially in the case of unbounded potentials of order two and in the
context of a nonlinear KAM scheme, is not straightforward. A strategy was discussed
n [15], [23]. While the literature on reducibility of quasi-periodic potentials is quite
extensive in the case of one space dimension, the case of higher dimensional manifolds
is still largely open. We mention [20], [26], [19] and finally [6], [22], [37], [16], [7] for
an unbounded potential.

Common features of the reduction algorithms are (1) they are perturbative, (2)
they require complicated nonresonance conditions depending on the potential, and
(3) they strongly depend on the number of frequencies.

In the present paper we study the reducibility of Schrodinger equations on the
circle with a small unbounded almost periodic potential of the form

Ou = i(ai + 6P(7§)>u,

1.1
- P(t) i= Va(w, )02 + Vi(z, ), + Vo(z,t), €T :=R/(2rZ), teR.

Here Vj, V1, V, are analytic (in an appropriate sense) almost periodic functions of time
with frequency w which is an infinite dimensional Diophantine vector in ¢*°(N,R)
(see Definitions 1.1 and 1.3). For small ¢ we prove a reducibility result under the
assumption that for any ¢ € R, the operator P(t) is L? self-adjoint and that w belongs
to some (explicit but convoluted) Cantor set of asymptotically full measure.

Of course the difficulty of such a result is strongly related to the regularity of
the almost periodic potential. Indeed, by definition, an almost periodic function is
the limit of quasi-periodic ones with an increasing number of frequencies. If the limit
P, — P is reached sufficiently quickly, the most direct strategy is to reduce iteratively
the approximations of (1.1) with quasi-periodic potentials by considering at each step
n the operator P, as a small perturbation of the one of the previous step. This
procedure in fact works if one considers sufficiently smoothing and regular potentials
but becomes very delicate in the case of unbounded potentials.

Good comparisons are [40], which studies a smoothing nonlinear Schrédinger
equation with external parameters and proves existence of almost periodic solutions
with superexponential decay in the Fourier modes, and [14], which looks at almost
periodic solutions for a nonlinear Schrédinger equation with external parameters with
subexponential decay in the Fourier modes. In the first paper, the very fast decay
implies that at each KAM step, one only needs to construct quasi-periodic solutions
(with an increasing number of frequencies), which is a well-known result; the only
point is to show that they converge superexponentially to a nontrivial almost periodic
solution. In the second paper the author does not rely on quasi-periodic approxima-
tions; this requires completely revisiting the KAM scheme but leads to solutions with
much less regularity. In this paper we follow the general point of view of [14] (see also
[11]), using the same infinite dimensional Diophantine vectors and various technical
lemmas (detailed proofs of all the technical lemmas can be found in [10]). The strat-
egy is to generalize the approach of [1] to the context of almost periodically forced
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PDEs. This requires developing pseudodifferential calculus in the context of analytic
functions on infinite dimensional tori; see page 6 for a more detailed presentation of
the novelties.

In order to give the precise statement of our theorems, we introduce some notation
and definitions.

We define the parameter space of frequencies as a subset of! />°(N, R), where we
recall that

(°(N,R) := {w = (w))jen € RY ! [|w]|oo := sup |w;| < oo}.
JEN
More precisely, our set of frequencies is the infinite dimensional cube
N
(1.2) Ry = [1 : 2} .
We endow the space of parameters Ry with the /> metric; namely we set

(13) doo(wl,wg) = ||w1 — WQHOC le,LL)Q S Ro .

Furthermore, we endow Ry with the probability measure P induced by the product
measure of the infinite dimensional cube Rg.

We now define the set of Diophantine frequencies. The following definition is a
slight generalization of the one given by Bourgain in [14]. Here and in the following
we denote (j) := max{1, |j|}.

DEFINITION 1.1. Given v € (0,1), > 1, we denote by D, the set of Diophan-
tine frequencies
(1.4)

1
Dy, ={w€Ry: w-A>y]|] —i~——~ WeZV:0< [4;] < o0
e _]EHN(1+|€]‘#<]>#) ]26;1 !

In the following we shall fix ;1 = 2 and denote Dy := Dy .

For all ;1 > 1, Diophantine frequencies are typical in the set Rg in the sense of the
following measure estimate, proved in [14] (see also [10]).

LEMMA 1.2. For pu > 1 there exists a positive constant C(u) > 0 such that
P(Ro \ Dy,u) < C(n)y.

For n > 0, we define the set of infinite integer vectors with finite support
(1.5) z2 = {te |, =Y 5] < oo}
JEN
Note that ¢; # 0 only for finitely many indices j € N.

DEFINITION 1.3. Given w € D, and a Banach space (X,| - ||x), we say that
F(t) : R = X is almost periodic in time with frequency w and analytic in the strip
o > 0 if we write it in totally convergent Fourier series

F(t)y= > F()e*“" such that F(() € X VI €L
Lez>

and > ||F(0)]|xe”Mn < 0.
L

!Here and in the following N does not contain {0}.
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We shall be particularly interested in almost periodic functions where X = H(T,),

H(T,) == {u =3 @™, 4 €C: lullgr,) = Y Jinle < oo},

nez ne”Z

is the space of analytic functions T, — C, where T, := {9 € C: Re(¢) € T, [Im(p)| <
o} is the thickened torus.
Now we are ready to precisely state our main result. We make the following
assumptions.
e (H1) The functions Vy, Vi, Vo are almost periodic and analytic, in the sense
of Definition 1.3, for @ > 0 and X = H(T%).
e (H2) We assume that

Vaw,t) = Vo) W(,1) € T xR,
(1L6)  Vi(n,t) = 20,V5(0,0) ~ Va(@,) ¥(,t) € T xR,
Vo(t,z) = Vo(z,t) — 0. Vi (2, t) + Opa Va(z,t) V(x,t) € T xR.

This implies that the operator P(t) in (1.1) is L? self-adjoint for ¢t € R.
Here and in the following we denote by B(E, F') the space of bounded linear
operators from F to F. If E = F, we write B(E) instead of B(E, E).

THEOREM 1.4 (Reducibility). Let & > 0 and assume the hypotheses (H1) and
(H2). Then there exists a subset Q. C Ry = [1, 2]V satisfying

(1.7) lim P(2.) = 1

such that the following holds. For anyw € Q.,t € R, 0 <o <o’ <7/4, p> 0 there
ezists 6 = 8(o,0') € (0,1) such that if ¢ < §, then there ezists a unitary (in L*(T))
operator Weo (t) = W (t;w) such that the following hold:
1. Woo(t), Weo (t) 1 are almost periodic and analytic maps on the strip @ /4 into
X = B(H(TU')’ H<T(r)) :
2. u(-,t) is a solution of the Schridinger equation (1.1) if and only if v(-,t) =
Weo(t) " u(-, t)] is a solution of the time independent equation

(1.8) 0w = 1Dy,

where Doy is a linear, self-adjoint, time independent, 2 x 2 block-diagonal
operator® of order two such that the commutator [Duo, Oz = 0.
3. For any s > 0, the maps R — B(H*(T)), t — Wy (t)*! are bounded.

From the theorem stated above, we can deduce the following corollaries.

COROLLARY 1.5 (Asymptotics of the eigenvalues). The spectrum of the operator
Do is given by

(1.9) spec(Doc) = {p0(w)} U {ud (@), 1l (@)} jen, C R,

/\_1(w)
J

rg
g (W) = Xoj® + oA + Xo(w) + 0 +j—;,j>0,

where Ay — 1, A1 ~ & do not depend on w, while Ao, A\—1,75 are Lipschitz with respect
to w and of order €. Finally po is Lipschitz with respect to w and of order €.

2We recall that an operator L on a vector space V is d x d block diagonal if there exists a
decomposition of V' = @V} such that L maps each V} in itself and all the V; have dimension at most
d.
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For compactness of notation we set [L(()—H = u(()_) = lp-

COROLLARY 1.6 (Characterization of the Cantor set). The Cantor set Q, given
in Theorem 1.4, is defined explicitly in terms of the spectrum of the block diagonal
operator Do,. More precisely, it is equal to the set Qoo (7y), v = &%, for some a € (0,1),
where

(1.10)
Qo(y) :=<weD :|w~€+,u(4o)*u(?l)|>2i V(€ 4,5") € Z° x Ny x Ny
Yy 7 9 - d(f) rJ * I
., ’ 2y
/ / . N (.47) _ (.‘7 ) >
V(£,5) € (ZL\{0}) x Ny, 0,0 € {—i—,—}},
where

a(0) = [J A+ |ta*(n)*) veez.
neN
COROLLARY 1.7 (Dynamical consequences). Under the same assumptions of
Theorem 1.4, the following hold.

e Analytic stability. For any 0 < o < &/4, p > 0, ug € H(Ts), the unique
solution of the equation (1.1) with initial datum u(x,0) = ug(x) satisfies the
estimate [[u(-,t)|lx(r,) So.z |tollm(ry) uniformly with respect to t € R.

e Sobolev stability. For any s > 0, up € H*(T), the unique solution of
the equation (1.1) with initial datum u(z,0) = ug(x) satisfies the estimate
(-, Ol s (ry Ss llwoll s (ry uniformly with respect to t € R.

Remark 1.8. By Theorem 1.4, items (1) and (3), one gets boundedness properties
of the maps W (t)*' both on analytic and Sobolev spaces. This is the reason why,
in Corollary 1.7, we get a stability result for both analytic and Sobolev initial data;
see section 7.

Strategy of the proof. The overall strategy of the proof is the one proposed in
[1] and consists of two main steps: a regularization procedure and a KAM reduction
scheme. The aim of the first step is to conjugate (1.1) to a simpler dynamical system
where the vector field is space and time independent up to a sufficiently smoothing
remainder. Here one uses the fact that the linear operator in (1.1) has a pseudo-
differential structure.

In the second step one completes the reduction by applying a KAM scheme, which
relies on the fact that the eigenvalues are at most double, with a quantitative control
on the differences.

In order to explain the main difficulties that must be overcome in order to deal
with almost periodic potentials, let us describe the strategy in more detail.

It is convenient to think of almost periodic in time functions as restrictions of
functions on an infinite dimensional torus. To this purpose we define analytic func-
tions of infinitely many angles as the class of totally convergent Fourier series with a
prescribed (and very strong) decay on the Fourier coefficients. One may verify that
in fact this definition coincides with the set of holomorphic functions on the thickened
torus

Ty :=={p=(pj)jen, ©; €C: Re(p;) €T, [Im(p;)| <o(f)"},

namely analytic functions such that the radius of analyticity of each angle increases as
7 — oo. This is quite a strong condition, but it is not at all clear to us whether it may
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be weakened, even in apparently harmless ways like requiring [Im(¢;)| < o log(1+(j))?
with p > 1.

In a nutshell the main novelties are the following: in the regularization step, we
need a normal form procedure which uses (1) operators induced by diffeomorphisms
of infinite dimensional tori and (2) pseudodifferential operators with symbols depend-
ing analytically on ¢ € T*. This basically requires developing a pseudodifferential
calculus for “classical” symbols a(p, z,£), with ¢ € TS°. On the other hand, in the
KAM reducibility scheme the main difficulty is the presence of extremely small divi-
sors, which have to be controlled by shrinking the radius of analyticity appropriately.
Let us give a more detailed description of our approach.

In the regularization procedure the first step is to reparameterize the x variable
(z ~ x4+ B(x,wt)) in order to remove the space dependence in the leading order term
Vo of (1.1). This induces an invertible linear operator which acts on the dynamical
system removing the = dependence from V5,. Here the time behaves as a parameter, so
no condition on the time dependence of the potential is needed. Note, however, that
this change of variables mizes time and space. Namely, if we start with a potential
which is analytic in time but only Sobolev in space, after the change of variables it
will have finite regularity both in time and in space. For this reason, since we need to
preserve analyticity in time throughout our procedure, we require that our potentials
are analytic also in space.

In the second step one reparameterizes the variables ¢ € T2 so as to remove the
angle dependence in V5. Here there are various nontrivial points to discuss, both in
order to guarantee that the change of variables is well defined and “invertible” and in
order to describe the action on analytic functions.

Indeed, even in the much simpler case of a finite number of angles, the regular-
ization procedure is usually performed on C'°° potentials, and working in the analytic
class requires some extra care (see also [23]).

In dealing with infinitely many angles, one uses the fact that w is Diophantine
in the sense of (1.4) as well as the fact that the potentials are analytic with growing
radius of analyticity as j — oo (see formula (1.11) and the comments following it).

The remaining steps in the regularization procedure do not introduce further
problems with respect to the first two steps. As is typical in this kind of result,
one could further push the regularization procedure up to an arbitrarily smoothing
remainder. We have chosen to regularize our problem up to order —2 because this
is the “minimal action” required in order to complete the successive KAM iterative
procedure.

An interesting point is that all the regularization steps apart from the first three
do not mix the regularity of time and space so that one could work with potentials
that are only analytic in time. A simple consequence is that if in (1.1) we assume that
V5 and V; are constant in time, then we can require that Vj has only finite regularity
in space (but is still analytic in time).

Since we work with a perturbation which is a differential operator whose coef-
ficients are analytic in both time and space, we cannot apply as a black box the
regularization procedure in [5], [35], which is based on Egorov-type theorems and
is developed for general pseudo-differential perturbations of class C*°. Indeed, de-
veloping a general Egorov-type theorem in analytic class does not appear to be a
straightforward question (actually the quantitative estimates that we need might not
hold true in a general setting).

Therefore, we perform the regularization procedure, in the class of analytic func-
tions, with quantitative estimates; see subsection 3.1 and section 4. The main feature
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which we exploit is that our perturbation P is a classical pseudodifferential operator
(i.e., it admits an expansion in homogeneous symbols of decreasing order).

We remark that in the regularization procedure, one could impose much weaker
analyticity conditions. One sees that in fact the only condition needed here is that
there exists p > 0 such that

(1.11) sule-l— V202)e=P 2 D] < o0,
LeLP iEN

If we choose different radii of analyticity, such as

T :={p = (¢;)jen, ©;j €C : Re(p;) €T, |Im(p;)| < pF(j)}, F(j) > 1,

condition (1.11) becomes

supH1+ V202) e~ P2 I6IFG) < o0

LeLP iEN

and one can construct many examples where this holds.

In the KAM scheme most difficulties come from quantitative issues, particularly
measure estimates. At a purely formal level our scheme is essentially classical. At
each step one considers a linear operator of the form D + P(p), where P is very small
while D is time independent and block-diagonal with blocks of dimension at most two.
First we introduce an “ultraviolet cut-off” operator, so that IIxyP depends on finitely
many angles (depending on N), while the remainder (Id — Il )P is very small.

Then one applies a linear change of variables e” (¥) where F solves the homological
equation R

—w - 0,F + [iD, F] + NP = [P(0)],

where [P(0)] is the time-independent and block-diagonal part of P.

Direct computations show that (at least at a purely formal level) this change
of variables conjugates D + P(p) to an operator of the form Dy + Pi(yp), where
Pi(¢) < P(p). In order to ensure that a solution to the homological equation exists
and in order to give quantitative estimates, one restricts w to a set where the spectrum
of the operator

(1.12) L(p) = —w - 9, L(p) + [iD, L(¢)]

is appropriately bounded from below. Iterating this KAM step infinitely many times,
one reduces the operator D + P(yp) for all w in some implicitly defined set where the
condition (1.12) holds throughout the procedure.
The difficult part is to verify that the Melnikov conditions (1.10) are such that
1. the Cantor set Qo () has positive measure;
2. for all w € Qo (7y) (1.12) holds at each KAM step with a quantitative control
in the solution of the homological equation;
3. the iterative scheme converges.
Here one needs not only for (1.11) to hold for all p > 0 but also for the supremum
n (1.11) to not diverge too badly when p — 0. It is here that the special choice
of analyticity comes into play, and it is not clear to us if it can be weakened in any
significant way.
The paper is organized as follows. In section 2 we state the properties of the
analytic functions on the infinite dimensional torus that we need in our proofs. In
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section 3, we provide some definitions and quantitative estimates for the class of linear
operators that we deal with. In particular, in sections 4 and 5 we define the norms that
we use and their corresponding properties. In section 4 we show that our equation
can be reduced to another one whose vector field is a two-smoothing perturbation of a
diagonal one. This is enough to perform the KAM reducibility scheme of section 5. In
section 6 we provide the measure estimate of the nonresonant set of parameters Qoo ()
(see (1.10)), and in section 7 we conclude the proofs of Theorem 1.4 and Corollary 1.7.
Finally, in Appendices A and B we collect some technical proofs of some lemmas that
we use throughout our proofs.

2. Analytic functions on an infinite dimensional torus. As is habitual in
the theory of quasi-periodic functions, we shall study almost periodic functions in the
context of analytic functions on an infinite dimensional torus. To this purpose, for
1,0 > 0, we define the thickened infinite dimensional torus Tg° as

o= (pj)jen, ©; €C: Re(p;) €T, [Im(p;)| <o(f)7.

Given a Banach space (X, | - ||x) we consider the space F of pointwise absolutely
convergent formal Fourier series T3® — X,
(2.) u@)= 3 A0, alh) € X,

ez

and define the analytic functions as follows.

DEFINITION 2.1. Given a Banach space (X, ||-||x) and o > 0, we define the space
of analytic functions TS® — X as the subspace

H(T®, X) = {u(go) =Y At eF ¢ o= S e fae)x < oo}.

Ler VA

In the case H(TS°,C), we shall use the shortened notation H(T).

Remark 2.2. We have chosen to work with an infinite torus TS® whose angles
are ¢; with j € N which in our notation does not contain 0. Of course it would be
completely equivalent to working on T, x TS® with angles §; with j € Ny := NU{0}.

To this purpose one just needs to define Z2° := {k € ZNo : Kl := D ien, (0) k| <
o0} =Z x Z° and consider Fourier series

u= Z a(k)e*?  such that Z (k)| *ln < oo,
keZx keZge
This notation is useful when working with the space H (T, H(T,)), which can
thus be identified with H(T, x TS, C) = H(T, x T). Indeed, u € H(T®, H(T,))
means

w= Z ﬂ(& l,)eie-g; _ Z an(e)eié-gﬂrinw _ Z a(k)eikﬂ’

LeLX (€,n)ELX XL keZ

where 6 = (z,¢) € T, x T and k = (n, ).

With this definition, an almost periodic function as in Definition 1.3 is the re-
striction of a function in H(T°, X) to ¢ = wt. Given F € H(T, X) we define
f(t) = F(wt). Note that the condition v € H(TS°, X) implies that the series in (2.1)
is totally convergent for ¢ € TS,
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2.1. Reformulation of the reducibility problem. In order to prove Theo-
rem 1.4, we consider analytic ¢-dependent families of linear operators R : To® —
B(L3(T.)), ¢ = R(p). Recall that the definition of B(E), for any Banach space E,
is given above Theorem 1.4. Given a frequency vector w € Ry and two operators
L,® : T — B(L2), under the change of coordinates u = ®(wt)v, the dynamical
system

Ou = L(wt)u
transforms into
(2.2)
O = Ly(whu, Li(p) = (Pun)L(p) = 0(p) ' L(9)D(p) — B(p) 'w- 0P (),

where3

(2.3) w0, ® = > i(f-w)B(0)e ¥

LeZR

A direct calculation shows that if £(wt) is skew-self-adjoint and ®(wt) is unitary, then
L (wt) is skew-self-adjoint too.
In conclusion, our goal is to prove the existence of maps

W, W € H(TS,, BH(T,), H(T,0))),
such that W (t) = W(wt) and W (t) = W~ (wt), which solve the reduction equation:
(2.4) W(p) 105 + eP(0))W(0) = W(p) " 'w - 0,W(p) = iDeo
where the operator P(¢) € H(T, B(H(T,), H(T,))) is of the form
Plp) = Va(@, )07 + Vi(z,9)0z + Vo(x, ¢)

with V; € H(T®, H(T,)) and is such that P(t) = P(wt). Note that for ¢ € T,
(02 4+ eP(y)) is self-adjoint; hence W(¢p) is unitary.
We remark that solving (2.4) is equivalent to diagonalizing the linear operator

iw -0y + 02 +eP € B(H(T, x T, C), H(TS x T,,C))

via a bounded change of variables with the special property that it is Toeplitz in time.

2.2. Properties of analytic functions. We now discuss some fundamental
properties of the space H(T°, X); note that all the results hold verbatim for H (T, x
T, X).

For any function v € H(TS°, X), given N > 0, we define the projector IIyu as

(2.5) Hyu(p) == Z a(0)et? and Tyu:=u—Hyu.
[€[n<N

The following lemma holds.
LEMMA 2.3. Let o,p >0, u € ’H(ngp, X). Then the following holds:

1 —
Myulle < e™*lullos, -

31f we set F'(t) = ®(wt), since the series expansion for ¢ € R is totally convergent, we have clearly
Ot F(t) = w- 0, P(wt).
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Proof. One has
Myulle = Y e a@)x <e ™ Y eIl jac)|x,
[€]y>N LELX
and the lemma follows. O
LEMMA 2.4. Let o0 >0, u € H(T;°, X). Then ||lul g1, x) < [Jullo-
Proof. For any ¢ € TS°, one has
lu(e)llx < Y @) xe = |ful, - 0

LeLX
LEMMA 2.5. Assume that X is a Banach algebra and u,v € H(T, X). Then
w € H(TZ, X) and |luv]s < [lulls]lv]o-
Proof. One has

and therefore, one obtains that
luvlle < Y e Mfage — k)| |[5(k) |1 x -
£,keZ
Using the triangular inequality [¢|, < |¢ — k|, + |k, one gets elfln < eolt=klnealkln,
implying that
luvlle < D~ e @ — k)|xe™ M |[Bk)|x < [lullolo]ls - 0

L,keZe

LEMMA 2.6. Let u € H(T,X). Then

(2.6) [ werde= tim o [ wle)den .oy = (0).
Moreover, for any ¢ € Z \ {0},

~ it o 1 it
(2.7) uf) = /OC u(p)e ¥ dp = lim @n~ /TN u(p)e e

N— 00

Proof. Let £ € Z3° \ {0}, and let N < |¢],,. Then surely ¢; = 0 for all j > N;

thus
elt? = ellivr | lfven

implying that

]. il
YPder...don =0.
@m" / oot
Hence
1 1 = o~ il
(2m)N u(p)dpr ... don = W (U(O) + Z u(l)e )dSOl —oden
™ ™ 0<|t],<N7
1 N
+ L / Z (e dy, ... dpy
T ey > N
—_ 1 =~ il-p
=u(0) + )y /’]I‘N u(0)edpy ...dpn
[€]y >N
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Since u € H(TS°, X), the tail of the series Z\€|n>N’7 goes to zero as N — oo. This

proves (2.6).
Now let £ € Z° \ {0}. Then we set

up(p) == u(c,o)e*i“’ _ Z a(k)ei(kff)-tp _ Z a(h + E)eih"p.
kezZe hEZX

By applying the claim (2.6) to the function u, and observing that @,(0) = @(¥¢), the
equality (2.7) follows. |
Given two Banach spaces X and Y, for any k € N, we define the space M (X,Y)

of the k-linear and continuous forms endowed by the norm

(2.8) | M| pyx,vy = sup (1M [ug,. .., uellly YM e Mp(X,Y).

lwnllxs o llukllx <1

To shorten notation, we denote ¢>° := ¢>°(N, C); moreover, for k € N, we write
My, instead of My (€*°, X)) where X is an arbitrary Banach space.

Let us now discuss the differentiability of functions. We define for @1, ..., @ € £*°
k
(2.9) diul@y, ..., 8kl = > P gt
teze  j=1

Note that if u € H(T5% ,, X) for any p > 0, then the series in (2.9) is totally convergent
on T,

LEMMA 2.7 (Cauchy estimates). Let 0,p > 0 and u € H(T3,,, X). Then for
any k € N, the kth differential d’;u satisfies the estimate

d&ullaecree py) Skp™Ftllosp -

Proof. Forany k € N, p € T, @1,..., 0, € L, ||@jlloc < 1forany j=1,...,k,
one has by duality |£- @] < ||€][1]|@]lcc < |€]|5]|#]|oc, and substituting in (2.9) one gets

ld5u(@)pr, - @l < S s @Wlx < sup (1lhe™ )l
LeL® FEL

A straightforward calculation shows that

. k,—ple k,—px _ 1.k —k —k —k
sup [fEe# < supate P — kFphe k<, ok,
Lez® x>0

which implies the claimed estimate. O

Remark 2.8. Note that if we endow the torus TS° with the ¢>° metric, namely
given two angles @1 = (¢1,5)jen € TS and @2 = (p2,5)jen € T, we define

(210)  duo(pr, ¢2) = supjen ( [Re(@1j = £25)lmoaze + (1) = Imlgzy)])

then (2.9) is the kth differential in the usual sense. Moreover, the tangent space to
Tee is £2°(C).
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Given a frequency vector w € Ry and u € H7(X), we define w - 9, u as in (2.3):

(2.11) w - Opu(p) == Z i(w- 0T ? = du(p)w].

LeELX

If we set f(t) = u(wt), since the series expansion for ¢t € R is totally convergent, we
have clearly 0, f(t) = w - O u(wt) .
The following lemma holds.

LEMMA 2.9. Let 0,p >0, u € H°TP(X), w € Rg. Then
o - Bpulls S p~Hullotp -

Proof. The lemma follows by the formula (2.11) and by applying Lemma 2.7 in
a straightforward way. 0

Parameter dependence. Let Y be a Banach space and v € (0,1). If f : Q = Y,
Q C Ry :=[1,2]N, is a Lipschitz function, we define

Il f (w1) —f(w2)HY7

S 1
”fH:;lp = S]‘Ell?l ||f(w>||Y7 Hf”)l/p = SupEQ ||W1 — w2||
w w1 ,w oS
(2.12) w s
Lip(v,Q li
LA = IR + A
If Y = H(T®, X), we simply write || - |22, || - [|iP, || - ||gip('y,ﬂ). If Y is a finite
dimensional space, we write || - ||*P, || - [|'P, || - ||“P(2),

The following result follows directly.
LEMMA 2.10. In Lemmas 2.3, 2.5, 2.7, and 2.9, if u(-;w) is Lipschitz with respect

to w € Q C Rg, the same estimates hold verbatim replacing || - ||» by || - H{;ip(%m.

As is typical in KAM reduction schemes, a fundamental tool in reducibility is to
solve the “homological equation,” i.e., to invert the operator w - 9.

LeEMMA 2.11 (Homological equation). Let o,p > 0, f € H(T3% ,, X), w € Dy,

(see (1.4)), with f(O) = 0. Then there exists a unique solution u := (w-d,) ' f €
H(T, X) of the equation
w-O0pu = f

satisfying the estimates
T T

(2.13) lulls S exp( = ()11l
pn p

for some constant T = 7(n,p) > 0. If f(:;w) € H(TS ,, X) is Lipschitz with respect
tow € Q C Dy, then

Jull 0 S excp(

T T i
cin (Z)) IR
p? P

for some constant T(n, ) > 0 (eventually larger than the one in (2.13)).

Proof. Since w € D, the solution u of the equation w - d,u = f is given by

u@) =@ 2,7 )= Y L0
LeZ\{0}
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Hence, using that w € D, ,, we obtain

lullo <57 7 T+ @ 1ar1F@))xe

tez=\{0} i
<yt sup (e TTO+ @ 1)) 1o,
Le72° ;
and the claimed estimate follows by applying Lemma B.1(i). O

We conclude this section by discussing how the definition of H (T, X) (or equiv-
alently H(TS® x T,, X)) depends on the coordinates on Tg°.

DEFINITION 2.12. Recall that £ := (> (N,C). We say that a function a €
H(T%,) is real on real if a(p) € R for all ¢ € T*°. Similarly, o € H(T2 ,, ()
is real on real if a;(p) € R for all p € T, j € N.

o+p?

PROPOSITION 2.13 (Torus diffeomorphism). Let o € H(T5S, ,, £°°) be real on real.
Then there exists € = (p) such that if ||a|lo4, < €, then the map ¢ — ¢+ a(p) is an
invertible diffeomorphism of the infinite dimensional torus TS® (with respect to the £>°-
topology) and its inverse is given by the map ¥ — 9 + &(19), where @ € H(T +p,£°°)

is real on real and satisfies the estimate ||al[o4 2 < [|aflg+p. Furthermore, if a(w) €

H(T5 . %) is Lipschitz with respect to w € 2 C R, then ||a||L1p(7’Q) < Ha||](;i_f,()%9).

COROLLARY 2.14. Given o € H(Tgo+p,€°°) as in Proposition 2.13, the operators

(2.14) Dot H(TS,, X) = H(TF, X),  ulp) = uly +aly)),
Dg : H(TS vy X) =2 H(TE, X), u(®) — u(d+ a(d))
are bounded and satisfy
[PallBrecres,, x) 1z, x)) 1PallBru(rs,, x) mEe x) < 1,

UEH( o+p? )UGH( +Pa

Do Paulp) =u(p), PaoPav(p)=u(p).

In order to prove our result, we shall proceed in steps, proving a series of technical
lemmas.

LEMMA 2.15. Fora,p >0, let u € H(TgS, ,, X) and oo € H(T2, £>°) with ||afl <
p. Then the function f(p) := u(p+a(p)) belongs to the space H(TL, X) and || fl, <
|ul|o+p- As a consequence, the linear operator

Do : H(TS , X) = H(TT, X)), ulp) = u(e + alp))
is bounded and satisfies || Pl g3 (1>
Proof. One has that

(2.15) flo)= D a(e)et et

LELR

otp’

and for any @ € T X) one has

o’

2, X)) H(Te X)) < 1

o‘

Moreover, for any ¢ € Z2°, one has

it i n
elf (¢) — Z H(e : CV(QD))

neN

= Z Z g(e CA(0)) .. (L QL)) Hn)e

neN el,...,anZfo

(2.16)
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By the formulae (2.15) and (2.16) one then gets that

= Y e,
keZe
(2.17) in

fRy:=3"— > (-alh)... (£-at))a).

n:
neN b+l 4+l =k

Using that for k = ¢ + ¢; + - -- + £,, one has that e?Fln < oltlnealliln eollnln and
(- a(t:))] < Ieflifla(f:)]lc, one gets that

(2.18)
1o = > e 7 k)llx
keZ®
<Y X e O a6
nEN T 0,0, A €L
||1’H1<\ | o =
"X ol ST S el
Leze neN nt j=0¢;€2
o1ty 15 |17l ]l
< 3 a3 ikl
ez neN
< > elao)llxexp(lely lally)
(e
lall, <p -
<Y AT a)x = fullos- 0
Lez.e
For a € H(T5 ,,£°°) we now consider the map
(2.19) Va(u)(p) := —ale + u(y)),
which, by Lemma 2.15 (with o ~ o+ £ and p ~ § ) is well defined, and B, , £ (0, R) —
H(']I‘;O+p,€ ), where

u € B,(0,R) := {u € H(T®, 6) : ull, < R}

provided R < §

LEMMA 2.16. Let a« € H(T , ). Then there exists ¢ = e(p) such that if

o+p?
lallot, < €, there exists a unique solution w € H(TS ,,£>°) of the fized point equation

o+87
u = Wo(u) satisfying the estimate |[ull, e < ||aHU+p If a(w) € H(TE ,, ),
w € Q C Ry =[1,2]N is Lipschitz, then Hu||Llp(7 D <o ||I;fl(;y’9).

Proof. To start with we show the following claim.
e Claim. There exist € = €(p), R = R(p) > 0 such that if ||a||s+, < €, then the
map (2.19) is a contraction on

B,(0,R) = {u € H(T=, 0 : ||ulls < R} .
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Proof of the claim. By taking R = R(p) sufficiently small, by applying Lemma 2.15,
one gets that for any u € B, 2(0,R), Wa(u) € H(TY, ,,€>) and [[Ta(u)lo4e <
2
lallo+p- Then, if [|aflo4, < e < R, one has that o : B, 2(0,R) — B, £(0, R).
Now, given ui,uz € B, 2(0,R), we want to bound [|Vo(u1) — Wa(uz)llo. By the
mean value theorem, one has

(220) W (ur) — o (ug) = /0 dyar(o -+ tur(9) + (1~ Dun(p) ) [ — ]

Since [[u1llo4 2, [[uzllo 42 < R, by taking R < £, by Lemmas 2.7 and 2.15 one has the
estimate

[Wa(u1) = Va(u)llor s < ldpallzere , mpllur — uzllose
(2.21) L
S llallotpllur —uzllors -

Hence by taking |a|lo+, < €(p) small enough, one gets that the map ¥, is a con-
traction and by recalling Lemma 2.15 the unique solution of the fixed point equation
satisfies [[ully 15 < [|a[lo4,. Now assume that a(;w), w € Q is Lipschitz with respect
to w. Recalling (2.19) and using the fixed point equation u = ¥, (u), one computes
for any wy,ws € Q)

Auwpulp) = alp +u(p;wi);wr) — (e + u(p; we);wa)
= a(p +u(p;wr);wi) — ale +u(p;wi);ws)
+ a(p + u(p;wi);wa) — a(p + u(p;wa);wa) -

By taking R = R(p) small enough, using the mean value theorem, the Cauchy esti-
mates of Lemma 2.7, and the composition Lemma 2.15, one gets

”AwlwzuHaJr% < Aviwello+p +Clp) Slelg ”a(';w)||0+pHAw1w2u||a+§ :
w

Hence, taking C(p) SUPyen HO‘('?W)HUH < %7 one gets HAw1w2U”a+§ < 2||Aw1wza“0+m

and the claimed Lipschitz estimate follows. 0

Proof of Proposition 2.13. Clearly the map ¢ — ¢ + a(yp) is invertible by taking
lallo+p < € small enough. By applying Lemma 2.16 there exists a unique a €
H(Tg"+§,€°°) with [[al[o4 2 < [+, satisying the equation

a(¥) + oW+ a() =0
for 9 € T? ,. The same holds exchanging ¥ ~» ¢ and a ~ a for ¢ € TZ°. Hence
2
9 — 9+ a(d) is the inverse of ¢ — ¢ + a(p) and vice versa, and the proof is
concluded. O

3. Linear operators. Given a linear operator R : L*(T) — L?(T), we identify
it with its matrix representation (Rz )i krez With respect to the exponential basis
where

/ 1 - .
R’,ﬁ = %/TR[elk x]eﬂkz dx.

Clearly, given R as above, the adjoint with respect to the standard hermitian product
in L?(C) is given by

(3.1) (R} =Ry

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/21 to 159.149.207.220. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SCHRODINGER EQUATION ALMOST PERIODIC POTENTIAL 401

We may also give a block-matrix decomposition by grouping together the matrix-
Fourier indices with the same absolute values. More precisely, we define for any j € Ny
the space E; as

(3.2) Ej := span{1}, E,; :=span{e’” e "} Vj €N,
and we define the corresponding projection operator m; as

mo « L*(T) — L3(T),

u(z) =Y a(j)e"” = mou(x) := (0),

JEZ

m;: L*(T) — L*(T),

u(a) =Y _aj)e’” = mju(x) = 0(j)e’" +a(—j)e 7", jeEN.
JEZ

(3.3)

The following properties follow directly from (3.2) and (3.3):

mi=m; VjeNy, mmp=0 Vj#j €Ny,

(3.4) Z m;=1d, L*(T) = ®jen,E; -
j€Ng

Hence, any linear operator R : L?(T) — L2(T) can be written in 2 x 2 block-
decomposition

(35) R = Z 7TjR7Tj/,
J,J'€No

where j,j’ € Ny, and the operator m;R7; is a linear operator in B(E;,E;). If
J,j" € N, the operator m;Rm;s can be identified with the 2 x 2 matrix defined by

RI R
(36) (Rﬂ'j’. R%') '

The action of any linear operator M € B(E;/,E;), j, 7 € N, is given by

Mu(z) = > Mfak)e*
k==+j
(3.7) i

Vu € Ejr u(z) = a(j/)eij/l- + a(_j/)e_ij/:c )
The operator moRmg € B(Ep) is identified with the multiplication operator by the

matrix element R, and if j,j’ € N, the operators 7;Rm, moRn; are identified with
the vectors

0 . .
(7750_]]) and (R}, Ry7).

We denote by [R] the block-diagonal part of the operator R, namely

(3.8) [R] := ZjeNoijwj :

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/21 to 159.149.207.220. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

402 RICCARDO MONTALTO AND MICHELA PROCESI

If mjRmjy = 0 for any j # j’, we have R = [R], and we refer to such operators as
2 x 2 block-diagonal operators. Note that for any j,j’ € Ng, the adjoint operator
M* € B(E;,E;/) is thus defined as*

(3.9) (M) =M.

We denote by S(E;) the space of self-adjoint matrices in B(E;).
For any j,j’ € Ny, we endow B(E;/, E;) with the Hilbert-Schmidt norm

(3.10) X lhs = VIR XX) = (30 1XE?)7

k=7

For any ¢ > 0, m € R we define the class of linear operators of order m (densely
defined on L*(T)) B°™ as

BI™ = {R L L2(T) = LA(T) : |R||gem < oo}, where

I Rl|gem == sup > =3 N|mRay[lus (i)~ -
j'e 0 jeN,

(3.11)

The following monotonicity properties hold:
(312)  [Rlsem <|Rllgem, o<’ [Rlpom < [Rlgom, m' <m.

As a notation, if m = 0, we write B instead of B70. Note that a direct consequence
of the definition is that if R € B°™, then (recall that D = —i9,)

(3.13) IRl 5om = [IR(D)™"™ |5,
where, for any « € R, the diagonal operator (D) is defined by
(D)u(x) ==Y _(j)*A(j)e" .
JEZ
Note that B7 is contained in the set of bounded linear operators B(#H(T,)) as shown
in the following.

LEMMA 3.1. Let 0 > 0 and ® € B?. Then

() l1®llsar,)) < [@]5e-

(ii) For any s >0, ||®||g(as(my) Ss 0 %[ @||50 -

Proof. Proof of (i). Let ® € B?. According to (3.3) and (3.5), for u € H(T
set Qu(x) = >, vew, Tj®mj[mju]. Then, using that for any j,j' € No, el

y -/ -/ . . o, .
e?li=3'le?17’l one gets the chain of inequalities

l@ulle = 3 €| 32 mpomyfmead|

o)
<

€N §/€No
<3 e"‘j/'ij/uHLz( 3 ea|j—j’|||ﬂ—j(1)71—j,HHs)
j’€No Jj€Ng
L, (3.11)
< sup (Z 7= '|\7Tj‘1’7fj/||ﬂs>||U||a < [[®@llsellullo-
7'€No * jenN,

4If j,j' €N, A € B(Eo), B € B(E;/,Eq), C € B(Eo, E;), then
(A8 := A8, (B)Y=BF, k=45, (C)§=0CY k==j
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Proof of (ii). Let s > 0 and u € H*(T). Then, using that for any j,j’ € Ny,
() <UD+ G =) 3G — '), one gets that

2
[l = 3 00| 3w, < 3| X Gyl

Jj€No j'€Np JENg  j’€Np

2

So D0 (30 66 = 3 I lslimyrl o)
JjENo j'€Ng

Moreover, by using the Cauchy—Schwarz inequality, one gets

1PulFre Ss Y ) Imprullie D GG =3V llms @mye s

j3'€Ng J€Ng
(3.11)
Se sup (k)2 M@ o lul e Ss 0|1 @|se ||l e
kEeNg
which proves the claimed estimate. 0

3.1. Toeplitz in time linear operators. We now consider ¢-dependent fam-
ilies of linear operators on L?(T), i.e., absolutely convergent Fourier series TS —
L2(T).

DEFINITION 3.2. For o > 0, m € R, we consider R € H(T,B%™). We define
the decay norm

(3.14) Rlom =Y e IR gom .
LeL

Moreover, given v € (0,1) and if R = R(p;w) depends on the parameter w € ), we
define

lip
om—+2

RIS = sup [R(w)
weN

3.15 , o
o ‘R|2,pm+2 = sup [Riws) (w2)]o,m-+2 .
w1 ,w2 €N ||(.¢)1 — (,‘)2”0Q
w1 Fw2

If m = 0, we write | - |, instead of | - |5 m. By recalling (3.12), one can easily see
that the following properties hold:

Lip(v,Q
(3 16) | ’ ‘a,m < | ’ |0/,m7 | |£1£L(W € | : |0:p7(,:/ ) Vo < 0'/,
| on < |- lomrs |- (520D < [ [LP0D ! <,

DEFINITION 3.3. We say that R € H(T®, B7™) is self-adjoint (resp., skew-self-
adjoint or unitary) if for all ¢ € T, the operator R(p) € B™ is self-adjoint (resp.,
skew-self-adjoint or unitary).

We now state some standard properties of linear operators in H(TS°, B7™).

LEMMA 3.4. Let T, x T3® — C, (x,¢) = a(z,¢) be in H(Toy, x TS ). Then
the multiplication operator M, : u — au satisfies |./\/l lo S p Hallowp If alz, p;w),

w € Q CRg is Lipschitz with respect to w, then |Ma\glp(’y D < <pYa ||L1p(7 )
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LEMMA 3.5. Let N,o,p >0, m,m’' € R, R € H(TF,B%™), Q € H(TX, ,, BTHrm").
(i) The product operator satisfies RQ € H(T, B»™™) with |RQ|gmim' Sm
o7 R g Qlotpm- If R(w), Q(w) depend on a parameter w € Q C Rg, then
|RQ|L1P 7:9) < P (\m\+2)‘R|Llp(v ﬂ)|Q|L1p 7,82)

om+m/ ~m o+pm’ *
(ii) The projected operator |IxRlom < e PN|Rlotpm. If R(w) depends on a
parameter w € Q C Rg, then the same statement holds by replacing | - |m with

|- Lip(y, Q)
a,m

(iii) The mean value |[7€(0)Ha,m < |Rlsm. Moreover, if R = R(w) depends on
a parameter w €  C Ry, then the same statement holds by replacing | - |5m with
|- |{;igl(%9)'

Iterating the estimate of Lemma 3.5(i), one has that if R € HotP(B°Tr™) then
there exists a constant Cy(m) > 0 such that for any N > 1, RY € H7(B%™V) and

N—-1
|RN‘G’mN < (Oo(m)p_lm‘|R|a+p,m) |R|0Ama

Li ) — Li ,Q i
RYEIG < (Calm)™ 1 IR D) RO

(3.17)

Let m € Z. We recall that the operator 9} is defined by setting
(3.18) OF 1] =0, O[N] =imgmedT, j#£0.

Note that this means that 99 = Id — mo; see formula (3.3).

LEMMA 3.6. Let o,p >0, m,m' € Z, a € H(Ts4, X ’]I“Hp)

(i) We have d7"ad™ € H(TL, B ™) and |07ad |o.mim < p~ ™ \allosp. If
a(+w), w € Q is Lipschitz with respect to w, then |87 ad™ ‘1;17;;12) < piml Ha||{;2f,()7’m.

(ii) For any N € N,

N—-1
(3.19) 0rady =" ¢ m(0La)dr ™ T+ Ry (a),

i=0
where the remainder Ry (a) satisfies the estimate
(3.20) RN (@)lomm—N Sy 0~ EF I la]| o

Moreover, one has com =1, c1.m = m. If a(-;w), w € Q is Lipschitz with respect to
w, then

Li Q m Li Q
(3.21) R (@)|S202) - Sy p= CVHIMID g LiPCL2)

(iii) Let b(;w) € H(Toyp x TS ,), w € Q, and set A = a0y, B = b7 . Then
AB € H(T, Bo™ ™'Y satisfies, for any N > 1, the expansion

N-1
(3.22)  AB=abdy ™™ + mab, 07 T 4> i ma(@i0)08 ™ T 4+ Ruy(a,b)
1=2

where ¢ € R for any i = 2,...,N — 1, and the remainder Ry (a,b) satisfies the
estimate

Li Q K Li ,Q) Li ,Q
(3.23) Ry (a,0)[5P 0 S o~ all5 2o 50O
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for some constant k = k(m,m’,N) > 0. As a consequence, for any N > 1, the
commutator [A, B] admits the expansion

N-1
[A’ B} (ma’b - m aI aerm -t + Z Cm, ’La 5 b Cnl’,i(aia)b)agl+m/7i
=2

+ Rn(a,b) — Rn(b,a).

Proof. Proof of (i). The proof follows by Lemmas 3.4 and 3.5 and using that for
any p € Z, 0 > 0, |08],, = |oP|52 Y < 1.
Proof of (ii). Let R := 8;”(18;” . Then R(¢) = Y,z R(£)e!#, where, for any

¢ € Z2°, the operator ﬁ(f) admits the matrix representation (ﬁ?l(a)j,j/ez,

(3.24) RI(6) =i jma(l, 5 — §1)5™ V4.5 € Z\ {0}.

We write the Taylor expansion

N—-1
(3.25) G =" m TG =3 Y emwd ™ R G = 3 + a5,
k=2
where the remainder ry(j, j') is given by
1
(3:20) G imenm [ Q=Y G = )Y dr( - 7)Y
0

By using the Petree inequality, one has that

+r@ =Ny
i ;,m N)) S (G =5

>N+Im|

This latter inequality implies that

(3.27) v (s )] S ()N (G — )2V

Using the expansion (3.24), we get that the operator R can be expanded as

N—-1
R(p) = a0 + m(8,0)0 ™ T+ > e i(0La)0T ™ T+ R (),

1=2

where the operator Ry (¢) = D yczoo ﬁN(ﬁ)ew"F, and for any £ € Z2°, the operator

R (¢) admits the matrix representation

(3.28) (Ra ()1 = 1""™a(t, j — j)rn (G, 7™, 4.5 € Z\ {0}

By (3.27), using that @(¢,-) € H(Ts4,), one gets the estimate

(3.29) RN (0] | S (5 — /)2 HImlem ol =dl G mam =G (e, )|t

Furthermore, using that

(j—3 >2N+\m|6 5l5—3'l SNum P (2N+|m\)
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one gets the estimate
(3.30) R (0)] | S pm CNHImD =t D=1 mm NG (4, ) oy -

Now if j, 7" € Np, using that for any § > 0, e“i‘j“‘j/' < e791i=3'l | the latter estimate
implies also the estimate on the 2 x 2 block ;R (¢)7;s of the form
(3.31)

73 R (O || S,y p~ CNFID e DI GHymEm =N G (0, ) o, WG, ' € No.

Then, for any j’' € Ng, one has that

Z €U|j_j/|||7rj7/€N(£)7le||<j/>N_(m+m,) SN P —(2N+\m| Ho-i-p Z e—5li=7'l
Jj€No j€Ny
S p” CNHPEDIGE(E ) 64,

which implies that

7(2N+\m|+1)H’d(

RN (Ol gomsm' -~ Sm.n p Glotp -

By using this latter estimate one gets that

RN ot —N Sy 0~ ENFHD S TG0, ) [ gpp S p~ VD a4,
LeZX

which is exactly the claimed estimate (3.20).

If a depends on the parameter w € Q C Rg, given wi,ws € {2, one expands
the operator 97 (A,,w,a)d™ as in (3.19), where a is replaced by A, .,a, and the
remainder Ry (Ay,w,a) is estimated in terms of A, ,a. The Lipschitz estimate then
follows.

Proof of (iii). The claimed expansion (3.22) follows by a repeated application of
item (i). The estimates of the remainder Ry (a,b) follow by using the estimates of
items (i) and (ii) and by using the composition Lemma 3.5. The expansion of the
commutator follows easily by expanding AB and B.A. d

LEMMA 3.7 (Exponential map). Let o > 0, p € (0,1), m > 0, and R(w) €

%(Tg‘;p,B”*P’*m), w € Q C Rg, and assume that
(3.32) pARIGETY <5

for some § € (0,1) small enough. Then, for any N > 1, the map ®n := exp(R) —
SINTURY ¢ q4(Te°, Bo—N™) with

n=0 n!

N
(3.33) |<1>N|L1P(W (C p IR, 7m)

Nm ~
As a consequence, exp(R) € H(T®,B7) and
(334) |eXp( )|L1P(’Y Q) <1+ C/) (\m|+2)|R‘L1p v, Q)

for some constant C > 0.

4. Normal form. As we said in the introduction, we want to conjugate to
constant coefficients the Schrédinger equation d;u = L(wt)u, where

L(p) :=i(1 + eVa(x,0))0pz + €iVi(z, )0y + €iVo(z, ) .

We assume that the functions Vo, Vi, Ve € H(TZ x T5) for some & > 0 satisfy the
condition (1.6), so that £(¢) is an L? skew-self-adjoint linear operator.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/21 to 159.149.207.220. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SCHRODINGER EQUATION ALMOST PERIODIC POTENTIAL 407

4.1. Normalization of the z-dependence of the highest order term. We
consider an operator induced by an analytic diffeomorphism of the torus

() = (x4 B(z, 0), ),

where 3 is a real on real analytic function on the infinite dimensional torus that will
be determined later. We make the ansatz that

(4.1) BEH(Ty, xTL), [1Bllo S8 VO< 01 <5,

By Proposition 2.13, for any 0 < o1 < & there exists dp(c1,7) such that for any
d < o, the map (z,¢) — (z+ B(x, ), ) is invertible, with inverse given by (y, ) —

(y+ By, ¢),¢), and

(4.2) BEH(To, xT),  NBlloy Sovos 18lloy Vo2 <01 < 5.
We now define the operator

(4.3) e (p)[u] := 1+ Ba(w, )ule + Bz, ¢)).

A direct calculation shows that this map is unitary and, if 8 is appropriately small,
invertible with inverse given by

(4.4) M ()" u] i= /1 + By (y, )uly + By, ©))

for ¢ € TY® with o < 0. Note that one has the relation
1 1
= = v I Be(z ) = —= :

The following lemma holds.

(4.5) 14 B,(y, ¢)

LEMMA 4.1. For any o < o’ < &, there exists 6 = 0(0,0’,7) € (0,1) such that if
e € (0,0), the following hold. Define

1 dx —2
mate) = (5= | )
Bz, p) = 0, * [—1 +T;2}i<(2’ ™ — 1] .

(4.6)

(i) The map T — B(H(To), H(T,)), ¢ — @D (p)* is bounded.
(ii) For any s > 0, the map T> — B(H*(T)), ¢ — ®W(p)*! is bounded.
(iii) @M () transforms the operator L(y) into

(4.7) LD () = (L)) L(p) = ima ()92 + ar(z, 9)s + ao(z, ),

where the functions mq € 7—[(11‘5;0),5,5, ay, a9 € H(T, x T) are independent of the
parameter w and satisfy the estimates

(4.8) lma = o [1Blles [1Bllo s llatllos llaollo o5 €

Finally, LY is skew-self-adjoint, and hence ma(p),a1(z, ) are real on real while
ap = —ag + a$a1.
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__Proof. The proof of item (i) follows by (4.3) and (4.4), by using the estimates on
B, (4.8), and by applying Lemmas 2.5 and 2.15.
To prove the item (ii), we argue as follows. Since 8 and f are analytic, then for

any ¢ € T° one has 8(y, ), B(p,-) € C°(T) and

sup (82, )leserys sup [1B(g,)les ) < oo
peT>e peT>

for any s > 0. A direct calculation then shows that sup,cre [®(9)|5(ms(T) <
C(Sup¢eqrw 18(¢; )lles(ry) and

sup [8(¢)~ s my < O sup 156 lexm),
© oo

peT>

and the result follows.
In order to prove (iii), we remark that the map ®()(y) satisfies the following
conjugation rules:

oW ()t oa(x, ) 0 @V (p) = aly + By, ¢),¢)
oW ()7 00, 0 @ () = (14 Buly + By, ¢), ©))dy

(4.9) (U By, )y + Bl 0. 0),

W () 'w- 0,9M () = w- 9, By + Bly. ). )9,
S4By o) a6y + Blu, ), 0).

Then, recalling (2.2), the transformed operator is
(4.10)

LD () = ias(y, p)02 + a1 (y, )0y + ao(y. ¢) ,
az = ((1+2%2)(1+5,)?)

e=y+B(y.0)

ay = (21(1 + Vo) Bas + eV (1 + Ba) — w - ag,ﬁ)

a0 = i/1+ B, (1+ V) 0/ T+ 52

e=y+B(y.e)

z=y+B(y,)

+eVoly, o + By, 9)) -

r=y+B(y.»)

By the definitions of the functions S(z, ) and ma(¢) given in (4.6) one gets

(4.11) as(x, ) = ma(p), mnamely (14 eVo)(1+ B.)? = ma(y);

hence the operator £ (p) in (4.10) takes the form (4.7). Since ®() is unitary, by
construction £ is skew-self-adjoint.

Since Vs, € ng, by applying Lemma A.4 (applied to the analytic function f(u) =
ﬁ, lu] < %), and by (4.6), one gets that for ¢ small enough, 8 € H(T,, x Tg),
my € H(TY) for any 0 < 01 < &. Using the mean value theorem, one gets the
estimate ||B||o,, M2 — 1oy Sou6 € The ansatz (4.1) is then proved. The ansatz
(4.2) follows by Proposition 2.13. Finally, by applying Lemmas 2.7, 2.15, and A .4,
and using that Vo, V1,V € H(T7 x T), one deduces the claimed properties on the

functions ag and a;. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/23/21 to 159.149.207.220. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SCHRODINGER EQUATION ALMOST PERIODIC POTENTIAL 409

2. Reduction to constant coefficients of the highest order term. Our
next purpose is to eliminate the ¢-dependence from the highest order coefficient
M2 (p)0xs of the operator L) () in (4.7). To achieve this we conjugate the equation
Opu = iLM (wt)u by means of a reparameterization of time t +— ¢ + a(wt), where « is
a suitable analytic function which has to be determined. More precisely, we consider
the change of variables

(4.12) u(t,z) = ®@u(t, ) == v(z, t + a(wt)), (z,t) e TxR.
We assume that a(y) is real on real and satisfies the ansatz
(4.13) acH(T), lalo, Soved V0O<o1<0.

By applying Proposition 2.13, for any oo < & there exists g = do(02,01,5) small
enough such that if § < g, the map ¢ — ¢ + wa(yp) is invertible with inverse given
by ¥ +— ¥ + wa(y¥) and

(4.14) a c H(T3),  lallos Sovow lallo, Voo <o1 <o

The inverse of the map ®® in (4.12) is then given by
(4.15) (@) u(z, ) = u(z, 7 + a(wr)).
Remark 4.2. If u(x) is a function independent of ¢, then (®(2)*y = .
The following lemma holds.
LEMMA 4.3. Let w € Dy. For any o < & there exists 6(0,5) > 0 such that if
ey~ < 4, then, setting
(4.16) Yo i=a(0) = | mafe)dp, o= (w0 0,) [%2 —1}
®®) transforms the operator LM () into

(4.17) LP(9) = irgd? + by (0, 2)Dy + bo(V, ) .

The constant Ay € R is independent of w. For allw € Dy the functions a(-;w), a(-;w) €
H(TS), b1 (5w), 1bo(+;w) € H(To xTS) are well defined and real on real. Furthermore,
for any 2 C D, the following estimates hold:

Az = 1], [bo |57, br [P0 S ey [lalFPOD a0 S eyt
Proof. A direct calculation shows that formula (2.2) reads
(4.18)

LO@®) = (@)W () = %E(U(ﬁ Fwa(®), p(®) =1+w-d,a(0+walv)).

p(V9)

Note that, since £()(wt) is skew-self-adjoint, then also £ (wt) is skew-self-adjoint.
By (4.18), one has

LP(9) = iby(9)0% + by (9, )0y + by (9, x),

(¥
bQ(ﬂ): [1—1—&) 1o) a:ng 19+w04(19
4.19
(4.19) bi (¥, x) == [1+w ) a:Hgo dtwd(d)
bo(V,x) := [1—1—&) ) a:Hgo wa(9)
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By the definitions of a(y) and A2 € R given in (4.16), one obtains that

ma ()

SRS A—
14+ w-0ya(p) 2

(4.20) ba(¥) = g, namely

and therefore the linear operator £(?)(y) defined in (4.19) takes the form given in
(4.17). Note that the function ms(p) defined in (4.6) is independent of w and therefore
also Ay does not depend on w. By applying Lemma 4.1, by (4.16) and by Lemma 2.11
and Proposition 2.13, one gets that [\a—1| < e and that for any 0 < o < &, for ey =% <
5, for some § = §(o, &) small enough, a, & € H(T°) with ||a|[5P | ||~HLIP(%Q> <o
ey~ L. Finally, recalling (4.19), using the properties on ag and a; stated in Lemma 4.1
and by applying Lemma A.4 (with f(u) = p%uv lu] < %) and Lemmas 2.9 and 2.15,
we can deduce the claimed properties on by and b;. 0

4.3. Elimination of the x-dependence from the first order term. The
next aim is to eliminate the dependence on z from the first order term in (4.17). To
this aim, we conjugate the vector field £?)(¢) by means of a multiplication operator

(4.21) @(3)(@ L @PER)y,

where p is an analytic real on real function which has to be determined. The following
lemma holds.

LEMMA 4.4. Let w € Dy. For any 0 < 0 < & there exists §(o,5) > 0 such that if
ey~! < 6, the following holds. Define

1 0y b (z, 0) — ma ()]
(4.22) mi(p) = 2ﬂ_/b1(x p)de, plz,p):= % .
(i) The map T — B(H(T,)), ¢ — @B (p)*! is bounded.
(ii) For any s > 0, the map T — B(H*(T)), ¢ — @) ()*! is bounded.
(iii) The operator <I>(3)( ) transforms L) () into

where the functions p(-;w),ico(;w) € H(Ty xTS), my(;w) € H(TS) are real on real,
are well defined for w € D, and satisfy for Q2 C D, the estimates

(4.24) IpllE™ T fleollg ), [y [§P) <o.5 e
Proof. Ttem (i) follows by (4.21), by Lemmas 2.5 and A.4, and by the estimates
(4.24) on p, which are a straightforward computation.
(ii) Since p is analytic, then p(y,-) € C*>°(T) for any ¢ € T* and

M(s) := sup |[|p(e,)
peT>

for any s > 0. A direct calculation shows that

sup |2 () |+ () <s Sup_[lexp(ip)lles(m) S exp(M(s)).
Q€T

peT>®

The latter estimate proves item (ii).
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(iii) A direct calculation shows that
(4.25)

£ () = (BENLP () = 20 (9) LD (9) 2P () — 8D () ' - 9,2 ()
- IAanx +c1 (I, 90)836 + Co(x, 90)’

where

o = —idap? — Xopyy +ib1py — iw - Opp + by

(4.26)
C1 = —2)\2])1 + bl .

The definitions of p and m; given in (4.22) allow us to solve the equation

(427) — 2X\opy (17, QO) + by (‘T7 50) = ml((p) .

Therefore, the operator £3) () in (4.25) takes the form (4.23).

Note that the skew-self-adjoint structure guarantees that imi () is a real function
(meaning that it is real on real). The claimed properties on the functions p and m;
follow by (4.22) and by applying Lemma 4.3. The claimed properties on the function
¢o defined in (4.26) follow by Lemma 4.3 and by applying Lemmas 2.7 and 2.9. |

4.4. Reduction to constant coefficients of the first order term. In or-
der to reduce the first order term in (4.23) to constant coefficients, we consider the
transformation

(4.28) W (p) : ulz) = ulz +q(p)),

where ¢ is an analytic function on TS to be determined. Clearly, the inverse of ®*) (¢)
is given by
oW ()7 u(x) = ulz — q(p))-

LEMMA 4.5. Let w € Dy. For any o < & there exists 6(0,5) > 0 such that if
ey~! <6, the following holds. Define

(4.29) A= ma () de =m1(0), q(p) = (w-dyp) " [ma(p) — M].

(i) The map TS — B(H(T,)), ¢ — @D (p)*! is bounded.

ii) For any s >0, the map T — B(H*(T)), ¢ — ®® ()= is bounded.
2 ®

(iii) The map ®W(p) transforms the operator L) () into

where the constant Ay € R does not depend on w and q(-;w) € H(T),ido(;w) €
H(Ty x TS®) are real on real functions defined for w € D. Furthermore, the following
bounds hold for any €2 C Dy:

(4.31) IgllZ* Y, Ndollz™ Y Soges Ml Se.

Proof. Ttems (i)—(ii) follow similarly to the corresponding items of Lemma 4.1, by
using the estimate (4.31) on the function ¢(y), which is a direct computation.
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(iii) A direct calculation shows that

LD () = (@5 LD () = N2y + (— w - Dpa(0) +ma () Dy + do(, ) |

(4.32)
dO(wi) = O( 74,0_(]((,0))-

By (4.29), we solve the equation
(4.33) —w-9pq(p) +m(p) = A1 .

Then, the operator £*) defined in (4.32) takes the form given in (4.30). We now show
that A; is independent of w. By (4.22) and (4.29), one has that

/ /blﬂmdxdﬁ

where by (4.19) and using the properties (A.12), one has that
by (9, ) = [

= a1 (0 + wa(¥), z) (1 tw- aﬂaw)) .

gl
1+ w- Opallo=g+wa()

By expanding a1(z, ¢) in Fourier series, i.e., a1(x,9) =3,z ez @1 (€,7)eit%eli,
one has that

7i/w/b1(ﬁ,x)dzdﬂ

=33 ae / ijo dx/ 1"<ﬁ+wa<ﬁ>>(1+w.aﬁaw)) v

JELLELX

= Y @(t0) / TS (14w 9ya(9)) i

LeLe

Lemma A3A 0 0 // al dQD dr .
271' oo

By Lemma 4.1, the function a; does not depend on w and therefore also A is inde-
pendent of w.

The estimates on A1, q,dp given in (4.29) and (4.32) follow by applying Lem-
mas 2.11, 2.15, and 4.4(ii). |

4.5. Elimination of the xz-dependence from the zeroth order term. In
order to eliminate the z-dependence from the zeroth order term in the operator £*) (i)
n (4.32), we conjugate, using (2.2), by a transformation

(4.34) 2P(p) == exp(V(p)), where V(p):=(v(z,p) 08"+, ou(z, @),

where v(x, ) is a real on real function to be determined. Note that for real values of
the angle ¢ € T, one has that V(p) = —V(p)*, implying that ®®)(p) is a unitary
operator.
LEMMA 4.6. Let w € Dy. For any 0 < o < & there exists §(c,5) > 0 such that if
ey~! <4, the following holds. Define
1
21)\

(4.35) o (<d0> fdo).
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(i) The map T — B(H(T,)), ¢ — @O (p)*! is bounded.
(ii) For any s > 0, the map T> — B(H*(T)), ¢ — ®®) (¢)*! is bounded.
(iii) The map ®®)(p) transforms the operator LY (¢) into

(4.36) LO)(p) := (L)LY () = iX20ps +MDu+{do)a () +e—1 (2, 90)05 " +RP (),

and the functions v(-;w) € H(Ty x TL) and the operator R®) (w) € H(T,B7~2)
defined for w € D, satisfy the estimates

~O,0

(4.37) ||U||gip(v,ﬂ)7 ||6_1||gip(v,ﬂ)7 \R(5)|§ii(“m < e

Proof. By (4.35), using the estimates on dy given in Lemma 4.5, one gets that v
satisfies the estimate (4.37). By Lemma 3.6, one has that the operator V() admits
an expansion of the form

1
(4.38) V(p) = v(@, )8, " — 5V (2, ©)0; % + c_30220,° + Ry(p),
where ¢_3 € R is a constant and for any 0 < 0 < &, Ry € H(TZO,B“_‘l) and

(4.39) VIEPC Ry [P < e

o,—1

By (4.34) and (4.39) and Lemma 3.6(i) and the estimate (3.34), there exists § =
§(0,7) € (0,1) such that if ey~! < §, then [(®®))*!], <, 5 1. Ttems (i)-(ii) then
follow by applying Lemmas 2.4 and 3.1.

(iii) A direct calculation shows that
(4.40)

£O(p) 1= (BENLY () = 2O (9) LI ()2 () — 8 () 1w - 9,2 ()
= iXo0py + M0y + do( ) + [1)\2{“):5z + )\1&,;, V( )]
O () w- 8,29 () + RV (),

where the remainder R)(y) is given by
(4.41)

R () = /O (1 = t)exp(—7V()) [[IA20ra + M10s, V(0)], V()] exp(TV(¢)) dr

1
+/ eiTv(“”)[do,V(ga)]eTV(“") dr .
0

By recalling (4.38) and (4.39) and by applying Lemma 3.6, using that 02 = Id — g
and Ay =1+ O(e), Ay = O(e), one obtains that

[i(A\28z + A10, A(w)} = 21\ovy (2, 9) + al (@, )0, + RUD (),
where for any 0 < o < 7, al!) € H(T, x TL), RUD € H(T, B2~2) with
(4.42) D LPO®) I RUDLPGD) <

and

[I\200a + A10a, V], V] € H(TF, B 72),
(443) . Lip(v,92)
[[IAQazm + )\16.%’ V]v V] 50,5 €.

o,—2
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Moreover, using the estimate on dy provided in Lemma 4.5 and by applying again
Lemma 3.6, one gets that

4.44 do, V] € H(T>, B%~2 do, VIIEPG Y <o e
(4.44) [do, V] € H(T, ), ldo, V]|

By applying Lemma 3.5, using Lemma 3.7 and the estimate (4.39) to bound exp(+7V(p))
and by applying the estimates (4.43) and (4.44), one obtains that

(445) R(I) c H(Tgo780',—2>7 |R(I)|L1P(’Y ,Q) <g"6' c.

~

Moreover, recalling the definition of the operator ®®) given in (4.34), using (4.38)
and (4.39) and by applying Lemmas 3.6 and 3.7, one obtains that
— () w- 9,8 (p) = —w - Bpu(, )0, + RUD (),

(4.46)
R(III)(SO) c H(Tgo7 6”7_2), ‘R(III)|L1p(’Y,Q) Sose V0<o<a,

and therefore by (4.40) one gets

=

LO(Q) = A28 + MOy + do + 2000, + e—1(x, )0, 1 + R (),
(4.47) e1(z,0) = al(2,¢) —w- Opv(z, ),
R(5)(<p) = R(I)(ga) + R(H)((p) + R(IH)(@).

The claimed statement then follows since dg + 2i\qv, = (dp). (see (4.35)), by the

estimate (4.37) on v, the estimate (4.42) on (15;71), and the estimates (4.42), (4.45),
and (4.46) on RO, RUD RUID) :

4.6. Elimination of the x dependence from the order —1. In order to
eliminate the 2 dependence from the term of order —1 in the operator £(®) given in
(4.36), we conjugate such an operator by means of a transformation

i
(448) 2% (p) == exp(G()), where G() := 5 (9(x,0) 00, % + 0,7 0 g(x, 9))
and g(x,¢) is a real on real function to be determined. Note that for real values of
the angle ¢ € T, one has that G(p) = —G(p)*, implying that ®© () is unitary.

LEMMA 4.7. Let w € D,. For any o < & there exists 6(0,5) > 0 such that if
ey~! <4, the following holds. Define

(4.49) g(z, ) = 2)\0 Heoi(z, @) — (e-1)2(9)] -

(i) The map T — B(H(T,)), ¢ — @O (p)*! is bounded.
(ii) For any s > 0, the map T> — B(H*(T)), ¢ — ®O) (p)*! is bounded.
(iii) The map ®©) () transforms the operator LO)(¢) into
(4.50) £(p) = (BENLD () = Aaa + 210+ {do)a(0) +(e-1)a ()05 + RO (),

where the function g(-;w) € H(T, x TL) is real on real and the operator R (w) €
H(T?,B‘”‘Q) is skew-self-adjoint. Moreover, they are defined w € D., and satisfy for
all Q C D, the estimates

(4.51) lgl|5POD | |RO LD < e

,O
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Proof. By (4.49), using the estimates on e_; given in Lemma 4.6, one gets that
g satisfies the estimate (4.51). By Lemma 3.6 and by the estimate on g one has that
for any 0 < 0 < &,

(4.52) GeH(TE,B772), [GEPT <, ¢

The above estimate and Lemma 3.7, using that w - 9,8 = w - 9,,(®©®) — Id), imply
that forany 0 < o <&

(4.53) sup |exp(£7G) [P0V $o0 1, |w - 0,(9)
’ 7€[0,1]

ETS(Q’WQ) 50,6 €.
Ttems (i)—(ii) follow by the estimate (4.53) and by applying Lemmas 2.4 and 3.1.
(i) A direct calculation shows that
(4.54)
£O(p) := (@)L () = 8% () 'L (9) () — 2O (p) M- 0,9 ()
=1X20z0 + A0z + (do) () + e—1(w, ‘P)a;l + [IX202z + A0z, G()]
+R D (p),

where the remainder R(y) is given by
(4.55)

RD(p) = /0 (1 = t)exp(=7G(9)) [[(A20z + M0z, G(9)], G(p)| exp(7G(p)) dT

1
+/ e~ ([(do)s + e-105",G(9)]) ™) dr — 2O () w0 9,00 ().
0

By recalling the estimate of Lemma 4.5 on dy, the estimate of Lemma 4.6 on e_q,
and the estimate (4.52) on G, and by applying Lemmas 3.5 and 3.6 and using that
A2 =14 0(e) and Ay = O(g), one obtains that for any 0 < 0 < &
(4.56)
H>\28xz + A0, g(@)]v g(‘p)] ) [<d0>w + 6716;1, g(@)] € H(TcorovBm_Q) ’
Lip(v,Q Lip(v,Q
Dodee + 200, GG e +eadr G|

9 ~O,0 £.

g,—

Therefore, the estimates (4.53) and (4.56) and Lemma 3.5 imply that the remainder
R defined in (4.55) satisfies

o,—2

(4.57) R e H(TX,B772), [ROLPOV < e Yo<o<s.

Recalling the definition of G, using the estimate (4.51) on g, by applying Lemma 3.6,
using that Ao = 1+ O(e), Ay = O(¢), one gets that

(4.58) [IA2Dre + A102, G(0)] = —2X0g,07 1 + RUD (¢),
where, for any 0 < 0 < 7,
(4.59) RUD € 4(TP,B772), |RUDEPGD < o

Therefore, by (4.54), one gets
L"(ﬁ)(@) = /\2aacx + )\lax + <d0>z + ( - 2)\29$ + 6—1)8;1 + R(G)(Qp) )
RO (p) == R (p) + R ().

The claimed statement then follows since e_; — 2Xag, = (e_1), (see (4.49)) and by
recalling (4.57) and (4.59). d

(4.60)
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4.7. Reduction to constant coefficients up to order —2. In the last step of
our regularization procedure, we eliminate the p-dependence from the term (dy),(¢)+
{(e_1)()0;t. To achieve this purpose, we consider the map

(4.61) oD (p) = exp(F(p)), Fl(p) = diag;esfi(p),

where for any j € Z, f; are analytic functions to be determined which are purely
imaginary for any real value of the angle ¢. We prove the following lemma.

LEMMA 4.8. Let w € Dy. For any 0 < 0 < & there exists §(0,5) > 0 such that if
ey~! < 6, the following holds. Define

1
(462) A0 = ;<d0>w,ga; )\—1 = <e—1>ac,g07
F(p) = (w- 0yp) {do)x — ido] + (w - 0p) He—1 — A_1]0; "

(i) The map T — B(H(T,)), ¢ — @7 (p)*! is bounded.
(ii) For any s > 0, the map T> — B(H*(T)), ¢ — @7 (p)*! is bounded.
(iii) The map ®)(p) transforms the operator L) () into

(4.63)  LO(p) == (®I)LO(p) = iNoBie + My + X0 + A10; 1+ R (),
where Mg, A\_1 € R and the operator RV e H(Tg",B"’_z) satisfy the estimates

(4.64) | Ag[MPOHD) X |LP(12) < o ‘R(7)|Lip(%9) <

o,—2 ~O,0 €.

Proof. Since the operator F (i) is a diagonal operator, one has that [F (), d%] = 0
for any k € Z, and a direct calculation shows that

(4.65) 20 ()" w - 0,87 () = w - 0, F ().
Therefore, by (4.62), we solve the homological equation
(4.66) — w0, F (@) + (do)e + (e-1)20, ' =1ho + A 18, "
By the estimates (4.31) on dp and (4.37) on e_; one gets that
| Ao[HPHD) 2 |LiP(r ) < o

and by applying Lemmas 2.11 and 3.6 one obtains that for any 0 < ¢ < &,
(4.67) F e H(TE,B%), |FIHPO < o eyt
The latter estimate and Lemma 3.7 imply that
(4.68) (@M e (T, B7), |(@D)*HP0D) <1+ C(0,5)ey ™
for some constant C(c,5) > 0. Hence, one obtains that

£0(p) = (@NLO(p) = Dadoa + 0Dy —w - D, F(9)
(4.69) +(do)a + {e-1)e0; ' + RO (),

RO () := T ()" REO ()2 () .

The estimate (4.64) on the operator R("), defined in (4.69), follows by the composition
Lemma 3.5, by the estimate (4.51) on R(®), and by the estimate (4.68) on (®(7))*!.0
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5. The KAM reducibility scheme. In this section we carry out the reducibil-
ity of the equation dyu = Lo(wt)u, where the operator Ly = £ is as given in
Lemma 4.8. We fix

(5.1) oo =

o | Ql

The operator Lo(p) = Lo(p;w) defined for w € D,, has the form
(5.2) Lo(p) =iDg + Po(y),

where for all 2 € D,

1 1
DO = >\26$m + T)\lax + A0 + TA—lam_l )

(5-3) A2, A Ao At €R, g = 1, A, [Ao MR AL M) < e
Pol5P 5 <, e

09,—2 ~00

Note that, as we pointed out in the previous section, the real constants As, A\; do not
depend on the parameter w. The linear operator Dy is a 2 x 2 block diagonal operator
Dy = diag;cn,Do(j) where, for any j € N, the 2 x 2 block Dy(j) is given by

p = =Xa® + g+ do = it %)= =2 = Mg Ao+ AT

In order to state our reducibility theorem, we fix some other constants. For n > 1,
we set

1 -1
(5.5) X€(1,2), on=00(1- gzﬁ) N = (n)*x"No,
j=1

and to shorten notation, we set

(5.6) a(0) .= [+ lea*(n)*) veezZz.

neN

THEOREM 5.1 (Reducibility). Let vy € (0,1). Then there exists § € (0,1) small
enough such that if ey~' < 6, for any n > 0, the following holds.
(S1), There exists a linear skew-self-adjoint vector field

where D, is a 2 X 2 self-adjoint block diagonal operator D,, = dlaug]eN0 Dn(j), Pn €
’H(Tff B""’_Q) is skew-self-adjoint, and moreover both are defined for w € Q,(7),
where Qo(7y) := Dy and for any n > 1
(5.8)
_— . - \—1 M -/ e}
Qn(y) = {w € Q1(7) : 10n-1(£,5,5") " Hlop < V(¢,35,5') € ZT x No x No,

;
o dé 2
JA7 and Onr(td. ) op < XY

¥(€.4) € (2 \ {0}) x No. el < Nm} .
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Forany (£,7, ") € Z3° xNoxNy, the operators Op_1(£,37,5') : B(E;,E;) — B(E;, E;)
are defined by

(59) Onfl(g,j,j/) =W Eld + ML(anl(j)) — MR(Dn71<j/)) .

For any j € Ny,

; 1 Lip (7,020
(510) D) = Do) 5 S ¢
and
(5.11) ‘»Pn‘gis(_'yz,ﬁn) < Cee "

for some constant C, > 0.
For n > 1, there exists a map ©,,(p) := exp(Fn(p)), where

00 Tpn—1ton
7, eH( o BT )
Saziton

is skew-self-adjoint and defined for w € Q,(7), which satisfies

(512) En(‘p) = ((I)n)w*ﬁn—l(@)'

The operator F,, satisfies the estimate

i n—1
(513) Fal 20 S er e
2

(S2),, For any j € Nq there exists a Lipschitz extension of the function Dy(j;-) :
Q,(v) = S(E;j) to the set D, denoted by D, (j;-) : Dy — S(E;), that, for any n > 1,
satisfies the estimate

~ . =~ . " _ o n—1
sup || Dy (j;w) = D-1(j;w)les S (7) Zee™
(5.14) w&Dy
1Dn(5) = Dna () Ik S ey~ 'e ™

~

—1

5.1. Proof of Theorem 5.1. Proof of (Si),, i« = 1,2. The claims hold by
recalling the properties of the operator £y listed in (5.2)—(5.4).

(S2)O holds, since the constants Ao and Ay are independent of w and Ag, A_1 are
already defined on D,.

5.1.1. The reducibility step. Proof of (S1),,,. We now describe the induc-
tive step, showing how to define a symplectic transformation ®,1 := exp(Fpn41) SO
that the transformed vector field £,,+1(¢) = (Ppi1)wsLn(¢) has the desired prop-
erties. We write II,, instead of IIy, to denote the projector on the Fourier modes
|¢|; < Ny, where N, is defined as in (5.5). A direct calculation shows that
(5.15)

Lo41(#) = (Prt1)wsLn(p) = Prs1(0) T La(@)Pri1(9) = Prta(p) 'w- 0o Pni1(p)

=iD,, — w - 0pFni1 + [iDn, Frr1] + I, P, + 11- P,

1
+/ (1 - T)e_T}—n“ [[iDnvfn+1]afn+1]eT}—"+l dr
0

1 1
+ / e T nt1 [Pn,fn+1]eT}-’L+1 dr — / (1- 7')677]:"*1[&) . 8¢fn+1,fn+1]67}-’”+1 dr .
0 0
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Our next aim is to solve the homological equation

(5.16) —w - OpFpi1 + [iDn, Frgt] + L, Py = [P, (0))],
where the diagonal part of the operator P, (0) is defined according to (3.8).

LEMMA 5.2. For all w € Qpn41(y) (see (5.8)), there exists a unique solution
Foiq € H(Tﬁj_p, B(’"*p) with p > 0, 0, — p > 0, of the homological equation (5.16)
satisfying the bound

(5.17) Faralor G+ < 4 Lexp(

On—pP

T T i
I () Pali0s™)
P p

for some appropriate constant T > 1.

Proof. In order to simplify notation in this proof, we drop the index n and we
write + instead of n + 1. Passing to the 2 x 2 block representation of operators and
taking the Fourier transform with respect to ¢, one gets that (5.16) is equivalent to

l( - W - Kﬂjﬁ_;,_(g)ﬂj/ + D(j)ﬂjﬁ_ﬁ. (g)ﬂ'j/ — ij+(f)7rjzp(j/)) + ﬂjﬁ(ﬁ)ﬂj/ = O
(5:18) W(¢,j,5') € Z* x No x No,  (£,5,5') # (0,5,4), eIy < N,
and 7rj.7?+(0)7rj =0 VjeNp.

According to the definition given in (5.9), for any w € Q4 (y) = Qu41(7), since the
operator

(5.19) O(L,j,j") = w - £1d — M(D(j)) + Mr(D(j"))

is invertible, one defines Fy as

—O(C,j, ) POy V(L) # (0,4,5).
0 V(t,5,5) =(0,5,5) -

For any (£, j, ') # (0,4.5), j # ', || < N, one obtains that

N al N
(5.21) |mﬁwwﬁmsfﬂwmwmm$

(5.20) miFy (O)mj = {

and for £ # 0, (|, < N,

(5.22) nmﬁwwmm<“ﬂ@ﬂmﬁwmhy

Let 0 = 0,. By recalling (3.11), the estimates (5.21) and (5.22) imply that for any
teZ>, |t <N

(5.23) 14 (Ol < A7 HIP(E)llsr 2 -

Hence in view of the (3.14), one obtains that
(5.24)
Filomp <770 D a(@)el =M | P(0)]| o2 < 7—1(;1%;) d(ﬁ)e‘p|é|")|77|g7,2
LeLe €L

Lemma B.1 T T
< ¥ 1exp(—lln (*))|’P|a7_2.
pr NP
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Now we show the Lipschitz estimate. Let wy,ws € Q4 (). Then for any (¢, 7,j') #
(0,7,5"), [l < N,

Awlwz (ij-l-(e)ﬁj/) = *io(evjajl;wl)ilAwlu& (Wjﬁ(g)ﬂj/)

(5.25) i
+ iO(&jaj/; wl)il (Awuuzo(ga jv]/))o(& jvj/; w?)ilﬂjlp(& w2)7rj’ .

By (5.3), (5.4), (5.10), and (A.7), one obtains that

8wy, O, 5, 5 ) op < llwr — wallool€ly + 2 Sup [ Aw;w: D ()]s
(5.26) 7€No
S (4l llwr — walloo -

Hence since wy,ws € Q4(7), the formula (5.25) and the estimate (5.26) imply that
for any ¢ € Zica .] #j/7 |€|Tl S N7

~ dz)Q ~
1A (73 B (O s < i (L + 1€l P )y s

a(l ~
n ;NAM (P07 s,

(5.27)

and for any ¢ € Z° \ {0}, j € No, |¢], <N,

~ d(0)%{;)* ~
1B ans (1, Z4 (O s < SO0 (4 4 1013 e, Bl o) s eor — oo
(5.28) )

+ d(g)ry<j> 1A, w, (Wjﬁ(g)ﬂj) s -

Recalling (3.11) and using the estimates (5.27) and (5.28), one obtains that

~ d()? ~
1B aron B (Ollso—nz < X071 4 101,) 1B (o) 15 o — wlloe
(5.29) K
a(o) _
NN
Y
Hence, recalling (3.14), one gets
(5.30)
BursFrlompz $772( sup a(02e 19 (1 4 14,)) fur — walloe 5up [Pl —2
LeZe weN

+471 ( sup d(@)e_pw") |Aw;wsPlo
LeELX

Lemma B.1 _9 T T
S v fen( T (2)) (lwr = walloo sup [P@)lo—2 + 11wy Plo )
pn P wen

for some 7 > 0. The bounds (5.24) and (5.30), together with (3.15), imply the claimed
bound. |

By the formula (5.15) and using that the operator F, 11 solves the homological
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equation (5.16), one obtains that

£n+1(‘p) = iDpy1 + Pn+1(90)

Dypy1:=Dn+ Z,, Z,:=

P 0)].

31 ! N
O3 P = 1Pt [ (1= e T [Ba0)] - P, Pl dr
0

1
+ / ¢TI [Py, Frgale™m dr .
0

The new block-diagonal part D,,4;. Since by the inductive hypothesis the
operator P,(p) is skew-self-adjoint, the 2 x 2 block-diagonal operator [P,(0)] =
diagjeNowj’Pn(O)wj is also skew-self-adjoint; therefore, the 2 x 2 block-diagonal op-

erator Z,, := Hﬁn(())} is self-adjoint. Hence, using the induction hypothesis, one gets
that D, 41 is a 2 x 2 self-adjoint block-diagonal operator. We then set

(6.32)  Dpy1(jy) :=mDpyimy :=Du(j) + 20(j), Zn(j) :=m2Zpm; VjeNy.
By the inductive estimate (5.11), one gets that for any o < o,

(5:33) |ZaleT ) = Dy = Dol 7P < PSP S e

o,—2 o,—2

The latter estimate implies that

sup (|2 (j;w)lus S ee”X" ()72,

wEN, ()
(5:34) wp  1Enlien) = ZaGiwa)ls o i
w1,w2E€Q, () ”wl - W2||oo
w1 Fwa2

uniformly with respect to j € Ng. The estimate (5.9) at the step n 4+ 1 then follows
by applying (5.33), using a telescoping argument.

The new remainder P,1. By applying Lemma 3.5(ii), one obtains the esti-
mates
(5.35) -P, |{;:LP+1§?2> < e Nulon=ou)|p, |{;;p,<_729 n)
Furthermore, by applying iteratively Lemma 3.5(i),(iii), one obtains that if p > 0
satisfies 0,41 + 3p < o, then

Lip(7,Qn+41)
‘e*‘r]"mrl ['Pn, fn_‘rl}eT]:n«Fl +
On41,—2
~ Lip(7,Qn+1)
(536) + ‘e—‘l’]'—n,+1 [[PTL(O)] - anna ]:n+1]67—]:n+1 )
Ont+1,—

+7Fni1 ‘Lip(%Qnﬂ)) |'P |Lip(%Qn) |]_~n+1 |Lip("/~,9n+1)

—a
5 P ( sup |6 On+1+3p nloy,—2 Ont1+2p

T€[0,1]

for some constant a > 0.
. . Lip(7,n
Now we want to use Lemma 3.7 in order to estimate sup (o 1) le U:Lp+(7+30+1)'

We fix p := Z2=Z" so that 0,41 +4p = 0pqy + 2524 = U”+20”+1 < o,. With

:|:T]:n+1
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this choice of p, by applying Lemma 5.2 and the inductive estimate (5.11) on P,,, one
obtains that

Lip(v,Qn41) _ Lip(7,Qn+1)
“Fn+1‘an+'7n+1 |}—n+1|0n+1+4ﬂ

<y 1exp( - In ( T )) |77n|I;inp’(12’Q")
(5.37) (70 - "n“) T T
T n
Sev exp( 1ln< )—x)
— Un+1 ; Op — On+1
Sevle T,

using that, by (5.5), one has

n

T T X
sup 4 exp +In —— ) <o0.
neN ( n Op — Op+41 2

Onp — 0n+1)
The estimate (5.37) proves the estimate (5.13) at the step n + 1. Furthermore,
1 i
(538) |-Fn+1 |L P(V,2nt1) <4

(O’n - O'n+1)2 on+;7n+1 o

1

for some § € (0,1) small enough by taking ey~' small enough and using that by (5.5)

. 1 X"
hm 726 2
n—o00 (an — o‘n+1)

=0.

The smallness condition (3.32) of Lemma 3.7 is verified, and therefore we get the
estimate

(539) sup |6i7—]:"+1|£'ip£'§’;l"+l) 5 1.
T7€[0,1] "

The estimates (5.35)—(5.37) and (5.39) (recalling the definition of the remainder P, 1
given in (5.31)) lead to the inductive estimate

(5.40)

Lip(7,Q2n+1) —Np(0n—0n41) Lip(7v,©2x)
‘PN"F ‘o‘n+1,—2 <e oo |P’ﬂ|a’",—2

+CW_1(J Zn+1)aexp<( ; )l ln( : )>(|P"|I;isgéﬂn))2>

Op — Opt1)? Op — Op+41

where C' > 0 is a positive constant and a > 0 is the constant appearing in the estimate
(5.36). The latter estimate and the inductive estimate (5.11) on |7>n|f;;ﬁ@2’”") together
imply that

Li Qn n— —x"
P ip(7,Q2n41) < e NVnlon=ont1) 0 o™X

Ont1,—2
1 n
(5.41) +Oy7! aexp( . ( a ))03526*%
(On — On+1) (0n — Opt1)" On — Ont1
< C*geixn-*—l
provided
1
sup {eXp (X"(X —1) = Np(on — on+1)) } <3
neN
1 1 T T n 1
CCley sup{ anp< < ln( )7(27)())( )}gf.
neN (o — Ony1) (On — Opt1)" On = On+1 2
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The first condition above holds by recalling (5.5) and by taking Ny > 0 large enough.
The second condition above holds by recalling (5.5) and by taking ey~! small enough.

Proof of (S82),,, ;. We shall need the following lemma (which is a simple adapta-
tion of the extension result Lemma M5 in [29]).

LEMMA 5.3. Let (X,d) be a metric space, and let H be a Hilbert space of dimen-
sion d. Let E C X be a subset of X and
f:E—H
be a function satisfying

i [f (1) = f(2) |l
Il = sup 7@l < 00 (7%= sup | <oo.
xeFE z1,22€E x1#x2 d(xlva)

Then there exists a Lipschitz extension f: X — H satisfying

. - i
[flloo Sa 1 Flloes AT Sa LA

By recalling the estimate (5.34), for any j € Ny, the function Q,41(y) = S(E;),
w = Z,(j;w) = Dpt1(f;w) — Dp(j;w) is a Lipschitz function. Hence we apply the
extension Lemma 5.3 with F = Q,1:1(7), (X,d) = (Dy,ds) (recall Definition 1.1
and (1.3)), and H = S(E;) equipped with the scalar product (A.3). Hence we get
a Lipschitz extension Z,(j;-) : D, — S(E;) of Z,(j) preserving the sup norm and
thNe Lipschitz seminorm, namely SUPyep, 1Zn (G w)llas < SUPL,0, 41 (7) ||2,2,(j;w)\|Hs,
12> < ||Z,,(j) ||k, Therefore, using the bounds (5.34) and defining D,,41(j) :=
Dn(§) + Zn(j), the claimed statement follows.

5.2. Convergence. Final blocks. By applying Theorem 5.1(S2),, the se-
quence of the Lipschitz functions D,,(j;-) : Dy = S(E;), j € Ny, is a Cauchy sequence

with respect to the norm || - ||“P(720) and, therefore, we can define the final blocks
(5.42) Doo(j) := lim Dy(j) VjeNo.

By using a telescoping argument one obtains that for any j € Ny, for any n € N, the
following estimates hold:

SUP || Do (43 w) — Do w)llus S (4) e ™",
(5.43) weDsy

A ~ . li _ _n
HDOO(])_Dn(])HHg,SEV te™x" .

Then, recalling the definition of the norm | - ‘1;71%(%9) given in (3.15), if we define the
2 x 2 block diagonal operators

(5.44) Dy, == diag;ey, Dn(j) ¥n €N, Dy = diag;ey, Doolf),
one gets that for any 0 > 0, n € N, and Q2 € D,
(5.45) Doe — Dy |20 S ee X"

Final Cantor set. For any ¢ € Z%°, j,j € Ny, we define the linear operator
Oxo(t,4,5") : B(Ej, Ej) — B(Ej/, Ej),

(5.46) Oc(l,,5') = w - £1d = ML (Doo(j)) + Mr(Deo(5")),
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and we define the set
(5.47)

- d(e o 0o
0ne(r) = {0 €0, 10w(6.3.5) Mop < S0 ¥10.5.57) € 23 x Ny x N,
oy - d(0)j* , o
jA3 and 0x(td) lon < T W(e) € @2 0)) x N}

The following lemma holds.
LEMMA 5.4. One has that

QOO('Y) - mnENan(V) .

Proof. We proceed by induction. By definition Q4 (y) € Dy. Now assume that
Doo(7) C Qu(7) for some n > 0 and let us show that Qo (y) C Qpi1(y). Let
w € Qoo (7). Since by the induction hypothesis w € ©,,(7), the 2 x 2 blocks D, (j;w),
j € Ny, are well defined and D, (j;w) = Dy(j;w) on such a set. By the estimates
(5.43), recalling the property (A.7), one obtains that

IML(Poo(§) = Pn(i)) lop » Mr(Poo(§) = D)) llop < (i) 2 X",
and using that
On(l,],5") = O (£, 4, 5') = =ML (Dn(j) — Deo(j)) + Mr(Dn(j') — Deo(i'));
the latter estimate implies that for any ¢ € Z$°, |¢|, < Ny, j,j’ € No, j # 7’

(548) ||07L(€7j7j/) - 000(67.% j/)”OP 5 867}(”7
and for any ¢ € Z3° \ {0}, [£];, < Nn, j € Ng
(5.49) 100 (£, 5,3) = O (€4, )lop S €7 ()72

Since w € Qoo () C Ny (7y), we can write
On(l,4,3") = Osc(£,,§") + On(£, 5, 5") — Ouc(£, 4, 5')
= 0u(6,,7) (14 + Ouc(€,3,3) 7 [On(t:5. ) = O £:5:1)] ).

and using the estimates (5.48) and (5.49), we get for any (¢, 7,7") # (0, 4,7), [¢|5 < N,
the bound

100 (£, 5,5) " [On(t,5,5") = O (6,5, )llop S ey~ '™ sup d(f)

[€ln <Ny
emma . 1
(550) TP 11 4 N ComNTT
_1
< ey lsup exp( —x"+C(n)N,"" In(1 + Nn)) .
neN
By the choice of N,, provided in (5.5), one obtains that
_1

sup exp( — X"+ Cn, )Ny ™" In(1 + Nn)) < 00,

neN
implying that for ey~! small enough

N . . 1

||Ooo(‘€aj7jl) 1[On(€7]7.7/) - 000(67.77]/)]”01) S 5 .

Hence, by the Neumann series, O, (¢, 4, j') is invertible and w € Qp,41(7). d
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KAM transformations. For every n > 1, we define the transformation ¥,, as
(5.51) U, =®;0---0d,,

where for any n > 1 the transformation ®,, = exp(F,) is constructed as in Theo-
rem 5.1. Note that for any n € N, the map ¥, is invertible, and the inverse is given
by

(5.52) Ut=0to 0],
We now show the convergence of the sequence of transformations (¥, )nen, in the
space H(T%i,BTO).
2
LEMMA 5.5. (i) The sequence of transformation (¥, )nen converges to an invert-

ible transformation Vo, for w € Qo (y) with respect to the norm | - \];721)(7’9"“(7)).
2

Furthermore, the following bounds hold:

<eyl.

~

0o — Idpip(%ﬂoo(v)) : |\Ij<;o1 _ Id'];ﬁa(’y,ﬂoo(’y))
2

(ii) For any 0 < 0 < %, for any s > 0, the maps Ty® — B(H(T,), H(T,)),
0= Uoo (@) and T — B(H*(T), H*(T)), ¢ — Yoo (@)*! are bounded.
Proof. Proof of (i). This is a completely standard argument.

Proof of (ii). The claimed statement follows by item (i) and by applying Lem-
mas 2.4 and 3.1. O

Final normal form. We now show the following lemma.

LEMMA 5.6. For any w € Qs () and for any ¢ € ng/g, the operator Ly(p;w)
defined in (5.2) is conjugated to the 2 x 2 block diagonal operator iDs, (see (5.42) and
(5.44)), namely (Voo)wsLo(p;w) = iDoo(w).

Proof. By applying Theorem 5.1, by recalling (5.51) of the maps ¥,,, n € N, and
by using that by Lemma 5.4, Qo () C Np>082,(7), one gets that for any n € N

(5.53) iDp(w) + Prlp;w) = L = (V) weLo(p;w) Yw € Qoo (7).

By (5.2) and (5.3) and by Lemmas 2.9 and 5.5, one has
. _ Lip(7,Q0 (7)) « ,—1 . Lip(7,Q60 (7))
(5.5 lw - O (Vo \Iln)|%07p Sp ¥ \Ifn|%0 —0

Lip(7,Q (7)) < 1

as n—o00, and |Lol|, "5

for p > 0 so that %2 —p > 0. Therefore, by recalling the (2.2), by the estimates (5.54),
and by applying Lemma 3.5(i), one gets that

(5.55) lim [(¥,,)weLo — (\I’oo)w*ﬁo|]£(7’ﬂ°°(7)) —0.
3

n— oo

By the estimates (5.11), (5.45), and (5.55) and passing to the limit in (5.53) one
obtains the claimed statement. |

6. Measure estimates. It remains only to estimate the measure of the set
Qoo (), defined in (5.47). In order to do this, let us start with some preliminary
considerations. For any j € Ny, the 2 x 2 block Dy (j;w), w € D, is self-adjoint and
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depends in a Lipschitz way on the parameter w. By (5.42) and (5.43) and by recalling
(5.3) and (5.4), for any j € N, we can write that

(6.1) Doo(j) = A2j?1d + Reo (j; w),
where the self-adjoint 2 x 2 block R (j;w) satisfies the estimate

. . -\ li _
(6.2) SUp || Roc (i w)lles S €() s [|1Boo (Dl < 7 b
wEDy

By applying Lemma A.2, one then obtains that for any j € N,

spec(Doo (j;w) = {14 (), 17 (W)}, spec(Roo(j;w)) = {17 (), r{ 7 ()},

where ug-i) and T;i) depend in a Lipschitz way on the parameter w € D, and they
satisfy
+ . +
i (@) = dag® + 715 (@),
(6.3)

Do —1<e, sup PP W) Sels), [P <er

weED,
If 7 = 0, one has |p|“P("P¥) < e, For compactness of notation we set ,u((;r) = ué_) =
to. By applying Lemmas A.1 and A.2(ii) one then obtains that the set Q4 (7y) can
be written as

(e 0'/ 2 . . oo
Qoo(’V)Z{WGD71|w-f+M§-)—M§»/”2% V(L j,5') € 22 x No x Np,
. . o o' 2
(6.4) j#j, o0 e{+ -}, |w~€+u§»)7u§ )|>77

= Aoy
V(t,j) € (2 \{0}) x No, 00" € {+,-}],
where we recall that

a(0) = [+ [ea*(m)*) Veez.

neN

In the remaining part of this section we prove the following proposition.

PROPOSITION 6.1. Assume that u > 3. For ey~ and v small enough one has
that P(Ro \ Qoo (7)) <.
We note that

(6.5) P(Ro\ 0c(7)) < P(Ro \ D, ) +P(Dy\ 2c(2))
In [10], it is proved that
(6.6) P(Ro\D,) £ 7:

therefore, we need to estimate the set D, \ Qo (7y). In order to shorten notation, we
define

6.7) 2 = {(K,j,j’)eZ:oxN()xNO:j;éj’}, 2y = (22 \ {0}) x Np .
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One has that
(6.8) D\ %= U Raum)U( U M),
(£,3,5")€21 (£,5)EZ

where for any (¢, j,j') € Z; we define

o o’ 2y
(6.9) Rejjr () = U {weD,y:|w-€+,u§» )—,ug-, )|<7}
o,0’'e{+,—}

and for any (¢, j) € Z5 we define

o o' 2y
(6.10) Qui(y) = U {wEDv:\w-E—I—uS.)—ué. )|<7,}.
o,0'e{+,—}

LEMMA 6.2. (i) Let (¢,,j') € Z1. If Rejj () # 0, then |52 — j| < C|¢|y and
P(Rejj (1) S ai5-

(i) Let (£,9) € Zo. 1 Qus(7) # 0, then P(Q4;(7) S wries

Proof. We prove item (i). The proof of item (ii) can be done arguing in a similar

fashion. Let j,j' € Ny, j # j/, and 0,0’ € {4, —}. By (6.3) one has that for some
constant C' > 0,

187 — 1§ > allf? — 32| — Ce(j + 5') — Ce.

Using that A2 = 1+ O(g) and that |j + j'| < |2 — j%|, one obtains that for & small
enough

g 0'/ 1 . .
(6.11) 7 =71 = Sl 47,

implying that Ro;; (y) = 0 for any j # j'. Hence, if (¢,7,7') € Z1 and Ry;j () # 0,
one has that ¢ # 0. Furthermore, if w € Ryj;(7) # 0, one has that by using (6.11),
one obtains that

I o o’ 2y
(612) 31 =57 <l =7 < G+ e S T el S 1 el
Now let

s:=min{n e N: ¢, #0}, S:=max{n e N:/{, # 0},

and e(®) = (egf))neN is the vector whose nth component is 0 if n # s and 1 if n = s.
Similarly we define the vector e(%). Let

P(t) = (w+tel®) - £+ ug (w+ tel®)) — ,ug»ff/)(w +tel®).

1

By using the estimate (6.3), for ey~ small enough, one has that

1
[9(t1) = P(t)] > [t1 — tals| = Cey™Htr —ta] > St —to].

The latter estimate implies that

2y 8l
t:w+tel® ¢ —H<—
Since Ry;j/(7y) is a cylinder with at most S — s components, one obtains the desired
bound. O
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Proof of Proposition 6.1. By recalling (6.8) and by applying Lemma 6.2, one gets
the estimate

PO\ 2%(M)) S D %* 2 <j>7d(€>

(€,5,5)€21 (,4)EZ2
152=3"21< 0l

Lemma B.3

1113 1 1

The claimed statement then follows by recalling (6.5) and (6.6).

7. Proof of Theorem 1.4 and Corollary 1.7. Let v :=¢%, a € (0,1). Then
the smallness condition ey~! < § is fulfilled by taking e € (0, g¢) with £ small enough.
By setting Q. := Q. (7), Proposition 6.1 implies (1.7). For any w € 2., we define

(7.1) Woo(p) i= 2 (9) 0 @@ 0. 0 @ (p) 0 T () o € TSy,
where the maps @1, ..., ®(") are as constructed in section 4 and the map ¥, is as
given in Lemma 5.5. The properties (1) and (2) on the maps Wao(¢)*! stated in

Theorem 1.4 are easily deduced from Lemmas 4.1, 4.3 to 4.8, and 5.5(ii) and from
Remark 4.2. Furthermore, by the same lemmas and Lemma 5.6 one obtains that
u(t, ) is a solution of (1.1) if and only if v(-,t) := Wao(wt) " tu(-, 1), w € Q., solves
the time independent equation 0;v = iDyv where Dy, is the 2 x 2 time independent
self-adjoint block-diagonal operator defined in (5.42)—(5.44). The proof of Theorem 1.4
is then concluded.

Proof of Corollary 1.7. Since D, is a 2 x 2 block-diagonal self-adjoint operator,
the general solution of the equation 0;v = iDs.v can be written as

v(x,t) = Z et P [T vg) .
J€Ng

Since m;Doomj : E; — E; is self-adjoint (recall (3.2)), one has that

itﬂ‘j'Docﬂ‘j [

le m00]|| 2 = ImjvollLe Vi € No.

This implies that both analytic and Sobolev norms are preserved; namely for any
o> 0, ||lv(-,t)]le = |lvolle, and for any s > 0, ||v(-,t)||gs = ||vo]|ms. Hence, by using
the properties (1) and (2) stated in Theorem 1.4, one obtains that for any w € Q. the
solution u(-,t) 1= Weo(wt)u(-,t) of (1.1) satisfies the desired bounds both in analytic
and Sobolev norms. The proof of the corollary is therefore concluded.

Appendix A. Technical lemmas.

A.1. Linear operators in finite dimension. Given an operator A € B(E;),
we define its trace as

Tr(A) = AY, A e B(Ey),
Te(A) := A] + A7), AcB(E;), jeN.

7j7

(A1)

It is easy to check that if A, B € B(E;), then

(A.2) Tr(AB) = Tr(BA).
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For all j,j' € No, the space B(E;, E;) is a Hilbert space® equipped by the inner
product given for any X,Y € B(E;/,E;) by
(A.3) (X,)Y) :=Tr(XY™).

This scalar product induces the L?-norm || - ||gs defined in (3.10).
Given a linear operator L : B(E;,E;) — B(E;/,E;), we denote by ||L|lop its
operator norm when the space B(E;/, E;) is equipped by the L?-norm (3.10), namely

(A4)  ILllop = sup {IL(M)lls : M € BB, Ey),  [|M]s <1}

For any operator A € B(E;) we denote by My (A4) : B(E;,E;) — B(E;,E;) the
linear operator defined for any X € B(E;/,E;) as

(A.5) Mp(A)X = AX .

Similarly, given an operator B € B(E; ), we denote by Mr(B) : B(E; E;) —
B(E;,E;) the linear operator defined for any X € B(E;/,E;) as

(A.6) Mgr(B)X :=XB.

The following elementary estimates hold:

(A7) ML (A)llop < | Alles,  [[Mr(B)llop < || Bllas -

We denote by S(E;), the set of the self-adjoint operators form E; onto itself, namely
(A.8) S(E;) == {A EB(E;): A= A*} .

Furthermore, for any A € B(E;) denote by spec(A) the spectrum of A. The following
lemma can be proved by using elementary arguments from linear algebra; hence the
proof is omitted.

LEMMA A.l. Let j,j' € Ng, A€ S(E;), B € S(Ej/); then the following hold.

(i) The operators My (A), Mr(B) defined in (A.5) and (A.6) are self-adjoint
operators with respect to the scalar product defined in (A.3).

(ii) Let j,5' € N, A € S(E;), B € S(Ej/). The spectrum of the operator M, (A)+
Mg(B) satisfies

spec(ML(A) + MR(B)> = {)\ tp:Aespec(d), pe spec(B)} .

(iii) Let j € N, A € S(E;), and B = X\g € S(Eg). Then, the spectra of the
operators My, (A) £ Mr(Xo) = M (A) £ Nold : B(Eo, E;) — B(Eo, E;) and M ( o) £
Mp(A) = Xld £ Mr(A) : B(E;,Eq) — B(E;, Eg) satisfy

spec (ML(A) + )\OId) = Spec<)\01d + MR(A)) = {)\ =D RPN spec(A)} .

We finish this section by recalling some well-known facts concerning linear self-
adjoint operators on finite dimensional Hilbert spaces. Let H be a finite dimensional
Hilbert space of dimension n equipped by the inner product (-, -);. For any self-
adjoint operator A : H — H, we order its eigenvalues as

(A.9) spec(A) = {M1(A4) < Ma(A) < - < A(A)}.

5Actually all the norms on the finite dimensional space B(E;/,E;) are equivalent.
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LEMMA A.2. Let ‘H be a Hilbert space of dimension n. Then the following hold.
(i) Let Ay, As : H — H be self-adjoint operators. Then their eigenvalues, ordered
as in (A.9), satisfy the Lipschitz property

|)\k(A1)—)\k(A2)| S ||A1_A2||B(’H) szl,...7’l’L.

(ii) Let A = yIdy + B, wherey € R, Idy : H — H is the identity, and B : H — H
is self-adjoint. Then

Me(A) =y + M (B) Vk=1,...,n.

(i) Let A :H — H be self-adjoint and assume that spec(A) C R\ {0}. Then A
is invertible and its inverse satisfies

1

ming—1,..n |/\k(A)| .

1A~ @ =

A.2. Properties of torus diffeomorphisms. In subsection 4.2, we have con-
sidered diffeomorphisms of the form

(A.10) P = @+ walp),

where o € H(T5, ), o,p > 0, and w € D,. By Proposition 2.13, for ¢ = (p) small
enough, if ||a||ye+» < &, then the diffeomorphism (A.10) is invertible and its inverse
has the form

(A.11) 9 — 9 + wa(v),

where a € H(T) and ||&]l, < [|ello+p. Note that by (A.10) and (A.11), one can
easily deduce the formulae

- 1
Lw-09aV) = 397 Dpa(d + wa(v))’

1
14w 0galp +walp))

(A.12)
14+ w-dya(yp)

The following lemma will be used in the reduction procedure of section 4 in order to
show that some averages do not depend on the parameter w € .

LEMMA A.3. The following holds:
Let w € Dy be a Diophantine frequency, and let a be a function in H(T). Then
Jpee w - D9a(9) d¥ = 0. As a consequence one has

(A.13) /Oo (1 tw- ag&(ﬂ))dﬂ —1
and for any ¢ € 22 \ {0},
(A.14) / i e (9450) (14 - 0,(9)) d = 0.

Proof. Let N € N. Then we split

w-dga®)= Y iw @O+ S w-fa)e?.

(0, 6], <N 1€l >N
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Since a is an analytic function, the second term on the right-hand side goes to zero
as N — 4o00. Moreover,

/ Z iw - La()e? dy = Z iw - 6&(5)/ a9 =0.
N

’H‘N
60, €], <N 60, €], <N

Therefore, one deduces that

s 1 : ~ i0-9 _
/w a(¥)di = lim L /TN D iw- La(t)e? dy = 0.

[l >N

The equality (A.13) follows immediately by the previous claim. The equality (A.14)
follows by observing that since £ € Z$° \ {0} and w is Diophantine, one has that

(it (9+wa()) (1 . 619&(19)) _ ﬁw L0, (eil‘(ﬁ+w&(ﬁ)));

hence the result follows by applying the first claim. ]

LEMMA A.4 (Moser composition lemma). Let f : Bg(0) — C be a holomorphic
function defined in a neighborhood of the origin Br(0) of the complex plane C. Then
the composition operator F(u) := f owu is a well-defined nonlinear map H(T®) —

H(T).

Proof. Clearly, since f(z) = >,~qan2" is analytic, for any z € C, |z2| < R, the
series Y, <, |an||z|™ is convergent. Moreover, let u € H(T2°) with ||ul|, <7 < R. By
applying Lemma 2.5, for any n > 1, u" € H(T2°) and |[u"||, < ||ul|? < r™. The series

> >0 anu™ is absolutely convergent with respect to || - [|;. Indeed, one has
| o], < S lanllulz < 3 faal” < o0
n>0 7 a>0 n>0

This implies that F(u) = Y, -, a,u™ belongs to the space H(T°), and the proof of
the lemma is concluded. B O

Appendix B. Some estimates of constants.
LEmMMA B.1. (i) Let py, s > 0. Then
sup JT(1+ (i) jtaf)en < exp( i (2))

LeLy p p
€] <oo

for some constant T = 7(n, u1, p2) > 0.
(i) Let p > 0. Then Y, pm e Pl < exp(—T In(3)) for some constant 7 =
2 o
7(n) > 0.
Proof. Proof of (). We remark that the left-hand side can be expressed as

exp (D2 =pi)"[66] +In (14 (i) 62) ) =s exp( D fullta)),

K3

(B.1) i) =T (14 (i)Y 2) — p(i)Ta .
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The result follows word for word from Lemma 7.2 of [10], where it is proved in

the special case yu; =2+ ¢q, pus = 2.
Proof of (ii). By Lemma 4.1 of [10], one has

ZH1+ ‘€|2 <Ch< .

tez> i
Therefore,
2= 2 Mg 00+ %)
<;£O)O(He—/9 (L )21 P) )
The claimed statement then follows by item (i) with pu; = ps = 2. d

LEMMA B.2 (Small divisor estimate). Let p1,pue > 1. We have the following
estimate for N > 1:

_1
(B.2) sup H(l + (i)Y < (1 + N)C(777H17H2)N1+T’
eeze: 6], <N
for some constant C(n, u1, pe) > 0.
Proof. For { fixed, let us denote by k the number of nonzero components of £.

We claim that k& <, N ﬁ; indeed,

k k

N2|€|UZZ wzjl Z’L]TI>ZJ77N k1+7i

j=1 j=1 j=1

S

and the claim follows. Now if n > 1, we have (i)|¢;] < (0)7¢;] < N, and setting
w = max{p, ua}, we have

sup Zln1+ ()62 < N In(1 + N#*) <, , N7 In(1 + N).
0eZ°: €], <N

1

Otherwise if n < 1, we have (2)[¢;] < ((8)"|¢; |)% < N7 and again

sup Zlnl+ Yrlg;2) <, Nt In(14+ N7) <, N ln(1+ N). 0O
02 |6, <N

=Y}

LEMMA B.3. For pi,pu2 > 3, we have that ), ;- l(@) < 00, where d({) :=

[Lien (1 + (@ :]2).

Proof. The proof is very similar to that of the measure estimate Lemma 4.1 of
[10]. O
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