The parameters tuning of event generators is a research topic characterized by complex choices: the generator response to parameter variations is difficult to obtain on a theoretical basis, and numerical methods are hardly tractable due to the long computational times required by generators. Event generator tuning has been tackled by parametrization-based techniques, with the most successful one being a polynomial parametrization. In this work, an implementation of tuning procedures based on artificial neural networks is proposed. The implementation was tested with closure testing and experimental measurements from the ATLAS experiment at the Large Hadron Collider. Program summary: Program Title: MCNNTUNES CPC Library link to program files: https://doi.org/10.17632/dmkydsxgd3.1 Developer's repository link: https://github.com/N3PDF/mcnntunes Licensing provisions: GPLv3 Programming language: Python Nature of problem: Shower Monte Carlo generators introduce many parameters that must be tuned to reproduce the experimental measurements. The dependence of the generator output on these parameters is difficult to obtain on a theoretical basis. Solution method: Implementation of a tuning method using supervised machine learning algorithms based on neural networks, which are universal approximators.

MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning / M. Lazzarin, S. Alioli, S. Carrazza. - In: COMPUTER PHYSICS COMMUNICATIONS. - ISSN 0010-4655. - 263(2021 Jun), pp. 107908.1-107908.7.

MCNNTUNES: Tuning Shower Monte Carlo generators with machine learning

S. Carrazza
Ultimo
2021-06

Abstract

The parameters tuning of event generators is a research topic characterized by complex choices: the generator response to parameter variations is difficult to obtain on a theoretical basis, and numerical methods are hardly tractable due to the long computational times required by generators. Event generator tuning has been tackled by parametrization-based techniques, with the most successful one being a polynomial parametrization. In this work, an implementation of tuning procedures based on artificial neural networks is proposed. The implementation was tested with closure testing and experimental measurements from the ATLAS experiment at the Large Hadron Collider. Program summary: Program Title: MCNNTUNES CPC Library link to program files: https://doi.org/10.17632/dmkydsxgd3.1 Developer's repository link: https://github.com/N3PDF/mcnntunes Licensing provisions: GPLv3 Programming language: Python Nature of problem: Shower Monte Carlo generators introduce many parameters that must be tuned to reproduce the experimental measurements. The dependence of the generator output on these parameters is difficult to obtain on a theoretical basis. Solution method: Implementation of a tuning method using supervised machine learning algorithms based on neural networks, which are universal approximators.
Event generator tuning; Machine learning
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Article (author)
File in questo prodotto:
File Dimensione Formato  
2010.02213.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 966.17 kB
Formato Adobe PDF
966.17 kB Adobe PDF Visualizza/Apri
1-s2.0-S0010465521000448-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 807.13 kB
Formato Adobe PDF
807.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/816902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact