Anion recognition by neutral hosts that function in aqueous solution is an emerging area of interest in supramolecular chemistry. The design of neutral architectures for anion recognition still remains a challenge. Among neutral anion receptor systems, urea and its derivatives are considered as "privileged groups"in supramolecular anion recognition, since they have two proximate polarized N-H bonds exploitable for anion recognition. Despite promising advancements in urea-based structures, the strong hydrogen bond drives detrimental self-association. Therefore, immobilizing urea fragments onto the rigid structures of a metal-organic framework (MOF) would prevent this self-association and promote hydrogen-bond-accepting substrate recognition. With this aim, we have synthesized two new urea-containing metal-organic frameworks, namely [Zn(bpdc)(L2)]n·nDMF (TMU-67) and [Zn2(bdc)2(L2)2]n·2nDMF (TMU-68) (bpdc = biphenyl-4,4′-dicarboxylate; bdc = terephthalate; L2 = 1,3-bis(pyridin-4-yl)urea), and we have assessed their recognition ability toward different anions in water. The two MOFs show good water stability and anion affinity, with a particular selectivity toward dihydrogen arsenate for TMU-67 and toward fluoride for TMU-68. Crystal structure characterizations reveal 3-fold and 2-fold interpenetrated 3D networks for TMU-67 and TMU-68, respectively, where all single interpenetrated networks are hydrogen bonded to each other in both cases. Despite the absence of self-quenching, the N-H urea bonds are tightly hydrogen bonded to the oxygen atoms of the dicarboxylate ligands and cannot be directly involved in the recognition process. The good performance in anion sensing and selectivity of the two MOFs can be ascribed to the network interpenetration that, shaping the void, creates monodimensional channels, decorated by exposed oxygen atom sites selective for arsenate sensing in TMU-67 and isolated cavities, covered by phenyl groups selective for fluoride recognition in TMU-68.

Size-Selective Urea-Containing Metal-Organic Frameworks as Receptors for Anions / L. Esrafili, A. Morsali, M.-. Hu, A. Azhdari Tehrani, L. Carlucci, P. Mercandelli, D.M. Proserpio. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 59:22(2020 Oct 29), pp. 16421-16429. [10.1021/acs.inorgchem.0c02215]

Size-Selective Urea-Containing Metal-Organic Frameworks as Receptors for Anions

L. Carlucci;P. Mercandelli
Penultimo
;
D.M. Proserpio
Ultimo
2020

Abstract

Anion recognition by neutral hosts that function in aqueous solution is an emerging area of interest in supramolecular chemistry. The design of neutral architectures for anion recognition still remains a challenge. Among neutral anion receptor systems, urea and its derivatives are considered as "privileged groups"in supramolecular anion recognition, since they have two proximate polarized N-H bonds exploitable for anion recognition. Despite promising advancements in urea-based structures, the strong hydrogen bond drives detrimental self-association. Therefore, immobilizing urea fragments onto the rigid structures of a metal-organic framework (MOF) would prevent this self-association and promote hydrogen-bond-accepting substrate recognition. With this aim, we have synthesized two new urea-containing metal-organic frameworks, namely [Zn(bpdc)(L2)]n·nDMF (TMU-67) and [Zn2(bdc)2(L2)2]n·2nDMF (TMU-68) (bpdc = biphenyl-4,4′-dicarboxylate; bdc = terephthalate; L2 = 1,3-bis(pyridin-4-yl)urea), and we have assessed their recognition ability toward different anions in water. The two MOFs show good water stability and anion affinity, with a particular selectivity toward dihydrogen arsenate for TMU-67 and toward fluoride for TMU-68. Crystal structure characterizations reveal 3-fold and 2-fold interpenetrated 3D networks for TMU-67 and TMU-68, respectively, where all single interpenetrated networks are hydrogen bonded to each other in both cases. Despite the absence of self-quenching, the N-H urea bonds are tightly hydrogen bonded to the oxygen atoms of the dicarboxylate ligands and cannot be directly involved in the recognition process. The good performance in anion sensing and selectivity of the two MOFs can be ascribed to the network interpenetration that, shaping the void, creates monodimensional channels, decorated by exposed oxygen atom sites selective for arsenate sensing in TMU-67 and isolated cavities, covered by phenyl groups selective for fluoride recognition in TMU-68.
Settore CHIM/03 - Chimica Generale e Inorganica
29-ott-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
216_2020_IC_Morsali_AAM.pdf

Open Access dal 22/10/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
216_2020_IC_Morsali.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.72 MB
Formato Adobe PDF
6.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/788903
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 51
social impact