In this paper we study the Plateau problem for disk-type surfaces contained in conic regions of R3and with prescribed mean curvature H. Assuming a suitable growth condition on H, we prove existence of a least energy H-surface X spanning an arbitrary Jordan curve Γ taken in the cone. Then we address the problem of describing such surface X as radial graph when the Jordan curve Γ admits a radial representation. Assuming a suitable monotonicity condition on the mapping λ↦ λH( λp) and some strong convexity-type condition on the radial projection of the Jordan curve Γ , we show that the H-surface X can be represented as a radial graph.

Existence of stable H-surfaces in cones and their representation as radial graphs / P. Caldiroli, A. Iacopetti. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:6(2016 Oct), pp. 131.1-131.21. [10.1007/s00526-016-1074-8]

Existence of stable H-surfaces in cones and their representation as radial graphs

A. Iacopetti
2016

Abstract

In this paper we study the Plateau problem for disk-type surfaces contained in conic regions of R3and with prescribed mean curvature H. Assuming a suitable growth condition on H, we prove existence of a least energy H-surface X spanning an arbitrary Jordan curve Γ taken in the cone. Then we address the problem of describing such surface X as radial graph when the Jordan curve Γ admits a radial representation. Assuming a suitable monotonicity condition on the mapping λ↦ λH( λp) and some strong convexity-type condition on the radial projection of the Jordan curve Γ , we show that the H-surface X can be represented as a radial graph.
35J66; 53A10; 57R40
Settore MAT/05 - Analisi Matematica
ott-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
H-surfaces_cones_postprint.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 383.96 kB
Formato Adobe PDF
383.96 kB Adobe PDF Visualizza/Apri
Caldiroli-Iacopetti2016_Article_ExistenceOfStableH-surfacesInC.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 578.17 kB
Formato Adobe PDF
578.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/770790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact