We study the asymptotic and qualitative properties of least energy radial sign- changing solutions to fractional semilinear elliptic problems of the form (−∆)^s u = |u|^{2^*_s−2−ε}u in B_R, u = 0 in R^n B_R, where s ∈ (0,1), (−∆)s is the s-Laplacian, BR is a ball of Rn,2^*_s := {2n}/{n-2s} is the critical Sobolev exponent and ε > 0 is a small parameter. We prove that such solutions have the limit profile of a “tower of bubbles”, as ε → 0+, i.e. the positive and negative parts concentrate at the same point with different concentration speeds. Moreover, we provide information about the nodal set of these solutions.

Sign-changing bubble-tower solutions to fractional semilinear elliptic problems / G. Cora, A. Iacopetti. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 39:10(2019 Oct), pp. 6149-6173. [10.3934/dcds.2019268]

Sign-changing bubble-tower solutions to fractional semilinear elliptic problems

A. Iacopetti
2019

Abstract

We study the asymptotic and qualitative properties of least energy radial sign- changing solutions to fractional semilinear elliptic problems of the form (−∆)^s u = |u|^{2^*_s−2−ε}u in B_R, u = 0 in R^n B_R, where s ∈ (0,1), (−∆)s is the s-Laplacian, BR is a ball of Rn,2^*_s := {2n}/{n-2s} is the critical Sobolev exponent and ε > 0 is a small parameter. We prove that such solutions have the limit profile of a “tower of bubbles”, as ε → 0+, i.e. the positive and negative parts concentrate at the same point with different concentration speeds. Moreover, we provide information about the nodal set of these solutions.
Fractional semilinear elliptic equations; critical exponent; nodal regions; sign-changing radial solutions; asymptotic behavior
Settore MAT/05 - Analisi Matematica
ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Sign-changing_bubbletower_semilinearfrac_postprint.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 432.63 kB
Formato Adobe PDF
432.63 kB Adobe PDF Visualizza/Apri
1078-0947_2019_10_6149.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 446.36 kB
Formato Adobe PDF
446.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/770754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact