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Abstract. We study the asymptotic and qualitative properties of least energy radial sign-

changing solutions to fractional semilinear elliptic problems of the form{
(−∆)su = |u|2∗s−2−εu in BR,

u = 0 in Rn \BR,

where s ∈ (0, 1), (−∆)s is the s-Laplacian, BR is a ball of Rn, 2∗s := 2n
n−2s

is the critical

Sobolev exponent and ε > 0 is a small parameter. We prove that such solutions have the limit
profile of a “tower of bubbles”, as ε→ 0+, i.e. the positive and negative parts concentrate at

the same point with different concentration speeds. Moreover, we provide information about

the nodal set of these solutions.

1. Introduction3

Let s ∈ (0, 1), let n ∈ N be such that n > 2s and let Ω ⊂ Rn be a bounded smooth domain.4

Consider the following non-local elliptic problem5 {
(−∆)su = f(u) in Ω,

u = 0 in Rn \ Ω,
(1.1)

where (−∆)s is the s-Laplacian, f(u) = |u|2∗s−2−εu or f(u) = εu+ |u|2∗s−2u for n > 6s, ε > 0 is6

a small parameter and 2∗s := 2n
n−2s is the critical exponent for the fractional Sobolev embedding.7

In the recent paper [7] the authors studied the asymptotic properties of least energy positive8

solutions to Problem (1.1), i.e. positive solutions uε such that ‖uε‖2s → S
n
2s
s , as ε → 0+, where9

‖ · ‖s is the standard seminorm in Hs(Rn) and Ss is the best fractional Sobolev constant. They10

proved, in the case of the spectral fractional Laplacian, that such solutions concentrate and11

blow-up at some point x0 ∈ Ω, providing also information about the blow-up speed with respect12

to ε. Their result is hence the fractional counterpart of the classical results of Han and Rey (see13

[18, 24]) for the Laplacian.14
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Motivated by that, it is natural to ask whether is possible or not to extend to the fractional1

framework analogous results about the asymptotic behavior of least energy sign-changing solu-2

tions to almost critical and critical semilinear elliptic problems for the Laplacian (see [2, 3, 19,3

20, 21, 23]).4

At first glance the answer seems to be positive, but differently from the case of constant-5

sign solutions, several difficulties arise when studying the qualitative properties of sign-changing6

solutions. Indeed, in view of the non-local interactions between the nodal components, we cannot7

take benefit from the fractional moving plane method (see [5]), and the strong maximum principle8

does not work properly (see [8, Sect. 1]). Moreover, when considering least energy sign-changing9

solutions, i.e. sign-changing solutions uε to (1.1) such that ‖uε‖2s → 2S
n
2s
s , as ε→ 0+, we cannot10

establish by mere energetic arguments, neither by a Morse-index approach, the number of nodal11

components. In the local case it is well known that they possess exactly two nodal regions, since12

each nodal component carries the energy S
n
2

1 (see [2, 3]). In the fractional case we can only say13

that both the positive and the negative part globally carry the same energy S
n
2s
s , when ε→ 0+,14

but this does not hold true in general for each individual nodal component and causes many15

troubles when performing the asymptotic analysis.16

In our contribution [8] we tackled the case of least energy radial sign-changing solutions to17

Problem (1.1) in a ball, when f(u) = εu + |u|2∗s−2u is the critical nonlinearity and n > 6s.18

In the spirit of the pioneering papers [16, 17], we showed that these solutions change sign at19

most twice and exactly once when s is close to 1. Moreover, when s > 1
2 , we proved that they20

behave like a tower of two bubbles as ε→ 0+, namely, the positive and the negative part blow-21

up and concentrate at the same point (which is the center of the ball) with different speeds.22

Nevertheless, we needed to assume that these solutions change sign exactly once to determine23

which one between the positive and the negative part blew-up faster (see [8, Sect.1]).24

We point out that for 2s < n ≤ 6s, according to a classical result of Atkinson, Brezis, and25

Peletier (see [1]), radial sign-changing solutions in a ball may not exist when ε > 0 is close to26

zero, while they do exist for n > 6s (see [8, Theorem 3.7]).27

In this paper we consider slightly subcritical nonlinearities f(u) = |u|2∗s−2−εu, and we extend28

the results of [8] to all s ∈ (0, 1) without any extra assumption. The same proofs work also in29

the case of critical nonlinearities with minor modifications. The main result of our paper is the30

following:31

Theorem 1.1. Let s ∈ (0, 1) and let n > 2s. Let (uε)ε be a family of least energy radial32

sign-changing solutions to33 {
(−∆)su = |u|2∗s−2−εu in BR,

u = 0 in Rn \BR,
(1.2)

where BR is the euclidean ball of radius R > 0 centered at the origin. Assume without loss of34

generality that uε(0) > 0 and set M±ε := |u±ε |∞. Then, as ε→ 0+ it holds that:35

(i) M±ε → +∞,36

(ii)
M+
ε

M−ε
→ +∞,37

(iii) |xε| → 0, where xε ∈ BR is any point such that uε(xε) = M+
ε ,38

(iv) the rescaled function39

ũε(x) :=
1

M+
ε
uε

(
x

(M+
ε )

2
n−2s−

ε
2s

)
, x ∈ Rn,
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converges in C0,α
loc (Rn), for some α ∈ (0, 1), to the fractional standard bubble U0,µ in Rn1

centered at the origin and such that U0,µ(0) = 1,2

(v) if s ∈ ( 1
2 , 1) then |yε| → 0, where yε ∈ BR is any point such that |uε(yε)| = M−ε .3

Theorem 1.1 states that, as ε→ 0+, the positive and the negative parts of least-energy radial4

sign-changing solutions to (1.2) blow-up and concentrate at the center of the ball with different5

speeds, when s > 1
2 . Moreover, for any s ∈ (0, 1), after a suitable scaling these solutions converge6

to the standard s-bubble. For s ∈ (0, 1
2 ] we still get that the positive and the negative parts blow-7

up with different speeds, but we cannot provide any information about the concentration point8

of the negative part. From a technical point of view (see the proof of Lemma 4.3) this is due to9

the fractional Strauss inequality for radial functions, namely10

sup
x∈Rn\{0}

|x|
n−2s

2 |u(x)| ≤ Kn,s‖u‖2s, (1.3)

where Kn,s is an explicit positive constant depending only on n, s. Indeed, as pointed out in [6,11

Remark 2, Remark 4], (1.3) does not hold when s ∈ (0, 1
2 ]. We also stress that in view of the12

non-local nature of our problem the positive and negative parts are not, in general, sub or super13

solutions to Problem (1.1) in their domain of definition, so it seems quite hard to overcome this14

difficulty by applying scaling arguments to u+
ε , u

−
ε separately.15

On the other hand, as proved in [3] for the Laplacian, if the blow-up speeds of u+
ε , u

−
ε are16

comparable then they must concentrate at two separate points. Therefore, in view of (ii), we17

believe that also for s ∈ (0, 1
2 ] the negative part concentrates at the center of the ball. We plan to18

investigate this question in separate paper. In addition, we think that, as done in [10, 23] for the19

Laplacian, by using a Lyapunov–Schmidt reduction method it should be possible to construct20

sign-changing bubble-tower solutions in general bounded domains, for all s ∈ (0, 1).21

We point out that, thanks to (ii) and (iii), any global maximum point is close to the origin,22

when ε > 0 is sufficiently small. Moreover, in Lemma 4.6 we specify that any such a point belongs23

to the nodal component containing the origin and blows-up faster than any other extremal value24

achieved in the other nodal components, independently on the number of sign-changes. In the25

local case, by using ODE techniques, it is well known that the global maximum point is the26

origin and the absolute values of the extrema are ordered in a radially decreasing way. Our27

result allows to recover these properties, at least asymptotically, via PDE-only arguments.28

In the second part of this work we study the nodal set of least energy radial sign-changing29

solutions to (1.2). We remark that, if uε is a nodal solution to (1.2) and uε ≥ 0 in a subdomain30

D ⊂ BR, the fractional strong maximum principle does not ensure, in general, that uε > 0 in D31

(see [4, Remark 4.2] and [8, Sect. 1]). In addition [13, Theorem 1.4] only grants that uε does32

not vanish in a set of positive measure. Nevertheless, combining the results of [8] with a new33

argument based on energy and regularity estimates, we show that for any s ∈ (0, 1) least energy34

radial sign-changing solutions to (1.2) vanish only where a change of sign occurs (see Lemma35

4.5, Lemma 5.2).36

Finally, in Theorem 5.8 we prove that for any s0 ∈ (0, 1), if there exists a L2(BR)-continuous37

family A = {uε,s}s∈[s0,1) of least energy nodal radial solutions to (1.2), then every element of38

the family changes sign exactly once, provided that ε > 0 is small enough. The key ingredients39

of the proof are the estimates contained in [25, Theorem 1.2], and the continuity of the map40

s 7→ CMr(BR)(s, ε), where CMr(BR)(s, ε) is the infimum of the energy over the nodal Nehari set,41

which is a new result of its own interest (see Proposition 5.6).42

The outline of the paper is the following: in Section 2 we fix the notation and we recall some43

known results about the existence of sign-changing solutions to (1.2), in Section 3 we study the44

asymptotic behavior, as ε → 0+, of the energy levels CM(Ω)(s, ε) in generic bounded domains.45
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In Section 4 we prove Theorem 1.1. Finally in Section 5 we analyze the nodal set of least energy1

radial sign-changing solutions to (1.2) and we prove Theorem 5.8.2

2. Notation and preliminary results3

In this section we recall some definitions and known facts that will be used in this work.4

2.1. Functional setting, standard bubbles. In this paper (−∆)s stands for the (restricted)5

s-Laplacian operator, which is formally defined as6

(−∆)su(x) := Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy = Cn,s lim

ε→0+

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy,

where the constant Cn,s is given by7

Cn,s :=
22sΓ

(
n
2 + s

)
π
n
2 |Γ(−s)|

.

Let s ∈ (0, 1) and let n > 2s. For a given smooth bounded domain Ω ⊂ Rn, we consider as a8

working functional space the Sobolev space9

Xs
0(Ω) := {u ∈ Hs(Rn) ; u = 0 a.e. in Rn \ Ω},

endowed with the norm10

‖u‖2s :=
Cn,s

2

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy,

and whose associated scalar product is11

(u, v)s :=
Cn,s

2

∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

The Sobolev space Ds(Rn) is defined as the completion of C∞0 (Rn) with respect to the above12

norm. By the fractional Sobolev embedding theorem it holds that Ds(Rn) ↪→ L2∗s (Rn) and13

Xs
0(Ω) ↪→ Lp(Ω) for all p ∈ [1, 2∗s], where 2∗s = 2n

n−2s . The previous embeddings are continuous,14

and the second one is compact when p ∈ [1, 2∗s). The best Sobolev constant is characterized as15

Ss := inf
v∈Ds(Rn)\{0}

‖v‖2s
|v|22∗s

, (2.1)

where | · |p denotes the usual Lp-norm, for p ∈ [1,∞]. To simplify the notation we will not specify16

the domain of integration in | · |p, but it will be always clear from the context that it is either17

Rn, or a fixed bounded domain Ω, or a family of bounded domains when considering rescaled18

functions. The value of Ss is explicitly known (see [9]), it depends continuously on s ∈ [0, 1], and19

it is achieved exactly by the family20

Uµ,x0,k(x) := k

(
µ

µ2 + |x− x0|2

)n−2s
2

, µ > 0, x0 ∈ Rn, k ∈ R.

If we choose k = bn,s, where21

bn,s := 2
n−2s

2

(
Γ
(
n+2s

2

)
Γ
(
n−2s

2

))n−2s
4s

, (2.2)

then the functions22

Ux0,µ(x) := bn,s

(
µ

µ2 + |x− x0|2

)n−2s
2

, (2.3)
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also known as “standard fractional bubbles”, satisfy1

(−∆)sUx0,µ = U
2∗s−1
x0,µ in Rn (2.4)

for all µ > 0, x0 ∈ Rn and2

‖Ux0,µ‖2s = |Ux0,µ|
2∗s
2∗s
.

2.2. Existence of constant-sign and sign-changing solutions. Let Ω ⊂ Rn be a smooth3

bounded domain and consider the problem4 {
(−∆)su = |u|2∗s−2−εu in Ω,

u = 0 in Rn \ Ω,
(2.5)

where ε ∈ (0, 2∗s − 2). Weak solutions to (2.5) correspond to critical points of the functional5

Is,ε(u) :=
1

2
‖u‖2s −

1

2∗s − ε
|u|2

∗
s−ε

2∗s−ε.

The Nehari manifold and the nodal Nehari set are, respectively, defined by6

Ns,ε(Ω) := {u ∈ Xs
0(Ω) ; I ′s,ε(u)[u] = 0, u 6≡ 0},

Ms,ε(Ω) := {u ∈ Xs
0(Ω) ; I ′s,ε(u)[u±] = 0, u± 6≡ 0}.

Since we deal with subcritical nonlinearities, by standard variational methods we know that there7

exists a minimizer uε ∈ Ns,ε(Ω) of Is,ε, and we set8

CN (Ω)(s, ε) := inf
v∈Ns,ε(Ω)

Is,ε(v).

Moreover, the minimizer is a weak solution to (2.5) and it is of constant sign. We also remark9

that, equivalently, constant-sign weak solutions to (2.5) can be found as minimizers to10

Ss,ε := inf
v∈Xs0 (Ω)\{0}

‖v‖2s
|v|22∗s−ε

,

and the following relation holds11

CN (Ω)(s, ε) =
2∗s − 2− ε
2(2∗s − ε)

S
2∗s−ε

2∗s−2−ε
s,ε . (2.6)

In the case of sign-changing solutions, as proved in [29], there exists a minimizer of the energy12

over the nodal Nehari set, and it is a weak solution to (2.5). We refer to such solutions as least13

energy sign-changing (or nodal) solutions and we set14

CM(Ω)(s, ε) := inf
v∈Ms,ε(Ω)

Is,ε(v).

Let us now turn our attention to the radial case. Taking Ω = BR, where BR = BR(0) denotes15

the ball in Rn of radius R > 0 centered at the origin, we set16

N r
s,ε(BR) := {u ∈ Xs

0(BR) ; u ∈ Ns,ε(BR) and u is radially symmetric},
Mr

s,ε(BR) := {u ∈ Xs
0(BR) ; u ∈Ms,ε(BR) and u is radially symmetric}.

As a consequence of the fractional moving plane method (see [5]), positive solutions to (2.5) in17

BR are radially symmetric and radially decreasing. In particular, it holds that18

CN (BR)(s, ε) = CN r(BR)(s, ε) := inf
v∈N rs,ε(BR)

Is,ε(v).



SIGN-CHANGING BUBBLE-TOWER SOLUTIONS 6

Concerning the case of nodal solutions, arguing as in [29] we obtain least energy radial sign-1

changing solutions as minimizers of the energy over the radial nodal Nehari set, and as before2

we denote3

CMr(BR)(s, ε) := inf
v∈Mr

s,ε(BR)
Is,ε(v).

We point out that it is not known whether or not CMr(BR)(s, ε) coincide with CM(BR)(s, ε), but4

they have the same limit when ε→ 0+ (see Lemma 3.3).5

3. Asymptotic analysis of the energy levels as ε→ 0+
6

In this section we study the asymptotic behavior as ε → 0+ of the energy levels CN (Ω)(s, ε),7

CM(Ω)(s, ε) defined in Sect. 2. We begin with the following technical result.8

Lemma 3.1. Let s ∈ (0, 1) and n > 2s. Let Ω ⊂ Rn be a domain, let x0 ∈ Ω and ρ > 0 be such9

that B4ρ(x0) ⊂ Ω. Let ϕ ∈ C∞c (Ω) be such that supp(ϕ) ⊂ B2ρ(x0), 0 ≤ ϕ ≤ 1 in B2ρ(x0) and10

ϕ ≡ 1 in Bρ(x0). There exists τ0 > 0 such that for every τ ∈ (0, τ0), setting11

usτ (x) := ϕ(x)τ−(n−2s
2 )Ux0,µ

(
x− x0

τ
+ x0

)
, (3.1)

where Ux0,µ is defined by (2.3), then the following estimates hold:12

‖usτ‖2s ≤ S
n
2s
s + Cτn−2s,

0 < S
n
2s
s − Cτn ≤ |usτ |

2∗s
2∗s
≤ S

n
2s
s ,

0 ≤ |usτ |1 ≤ Cτ
n−2s

2 ,

(3.2)

where the constants C are positive and depend only on n, s, x0, µ and ρ. Moreover, for any13

0 < ε < 2s
n−2s , taking µ = b

2
n−2s
n,s , where bn,s is given by (2.2), we have14

0 < τ(n−2s
2 )ε

[
S
n
2s
s − Cτn

]
≤ |usτ |

2∗s−ε
2∗s−ε ≤ Cτ

(n−2s
2 )ε,

0 < τ(n−2s
2 )(1+ε)

[
S
n
2s
s − Cτn

]
≤ |usτ |

2∗s−1−ε
2∗s−1−ε ≤ Cτ(n−2s

2 )(1+ε),
(3.3)

where the appearing constants are positive and depend only on n, s, x0 and ρ. Let 0 < s0 < s1 ≤ 115

and let n > 2s1. Then, if s ∈ [s0, s1) and ε ∈
(

0, 2s0
n−2s0

)
, both τ0 and the above constants C can16

be taken in such a way that they depend on n, µ, ρ, s0, s1, but not on s, τ and ε.17

Proof. Inequalities (3.2) are proved in [27], [28] and hold true for all sufficiently small τ > 018

with constants C independent on τ . Concerning the dependence of the constants C on the other19

parameters we refer to [8, Remark 2.2]. Let us focus on the proof of (3.3). Taking if necessary20

a smaller τ0 > 0 so that τ0 < min{1, 2ρ}, we find that, when q = 2∗s − ε or q = 2∗s − 1 − ε,21

0 < ε < 2s
n−2s22 ∫

Rn
|usτ |q dx ≤ Cτn−(n−2s

2 )q

(
C +

∫ 2ρ
τ

1

rn−(n−2s)q−1 dr

)
≤ Cτn−(n−2s

2 )q,

where the constants C > 0 depend on n, s, µ, but not on τ nor on ε. Recalling the definition of23

bn,s, one can see that all the previous constants can be taken in a uniform way with respect to24

s ∈ [s0, s1) when n > 2s1 and ε ∈
(

0, 2s0
n−2s0

)
. Hence the right-hand side inequalities in (3.3) are25

proved.26
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In order to prove the left-hand side inequalities it suffice to notice that, thanks to our choice1

of µ = b
2

n−2s
n,s , it follows that |Usµ,x0

|∞ = 1 and thus |Usµ,x0
(x)|q ≥ |Usµ,x0

(x)|2∗s for every x ∈ Rn,2

where q = 2∗s − ε or q = 2∗s − 1− ε. Then, using also (3.2), we find that3 ∫
Ω

|usτ |q dx ≥ τn−(n−2s
2 )q

[
S
n
2s
s −

∫
Rn\Bρ/τ

|Usµ,x0
|2
∗
s dx

]
≥ τn−(n−2s

2 )q
[
S
n
2s
s − Cτn

]
,

for some constant C > 0 which depends only on n, s and ρ, but not on τ , ε, and which is uniform4

with respect to s ∈ [s0, s1). The proof is complete. �5

As a consequence we obtain the following uniform asymptotic result on CN (Ω)(s, ε).6

Lemma 3.2. Let s ∈ (0, 1), n > 2s and let Ω be a smooth bounded domain of Rn. Then, as7

ε→ 0+, it holds8

CN (Ω)(s, ε)→
s

n
S
n
2s
s . (3.4)

Moreover, if 0 < s0 < s1 ≤ 1 and n > 2s1, for every ε ∈
(

0,min
{
τ0,

2s0
n−2s0

, 1
})

, where τ0 is9

given by Lemma 3.1, we have10

sup
s∈(s0,s1)

∣∣∣CN (Ω)(s, ε)−
s

n
S
n
2s
s

∣∣∣ ≤ g1(ε), (3.5)

where g1 does not depend on s and g1(ε)→ 0+ as ε→ 0+.11

Proof. Let s ∈ (0, 1) and n > 2s. In order to prove (3.4), in view of (2.6), it is sufficient to show12

that Ss,ε → Ss, as ε→ 0+, where Ss,ε := infu∈Xs0 (Ω)\{0}
‖u‖2s
|u|2

2∗s−ε
. To this end we observe that, by13

Hölder’s inequality, for every u ∈ Xs
0(Ω) and any sufficiently small ε > 0 we have14

|u|2∗s−ε ≤ |u|
2ε

(2∗s−ε)(2
∗
s−2)

2 |u|
2∗s (2

∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

2∗s
.

Then, thanks to the fractional Sobolev embedding and the variational characterization of the15

eigenvalues, we infer that16

λ1,s(Ω)
2ε

(2∗s−ε)(2
∗
s−2)S

2∗s (2
∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

s ≤ Ss,ε, (3.6)

and thus it follows that17

Ss ≤ lim inf
ε→0+

Ss,ε. (3.7)

Now, let us fix x0 ∈ Ω, ρ > 0, ϕ as in the statement of Lemma 3.1 and take µ = b
2

n−2s
n,s . Let usτ be18

the function defined in (3.1). Using both (3.2) and (3.3), then for any τ ∈ (0, τ0), ε ∈ (0, 2s
n−2s )19

we obtain20

Ss,ε ≤
‖usτ‖2s
|usτ |22∗s−ε

≤ S
n
2s
s + Cτn−2s

τ

(
n−2s
2∗s−ε

)
ε
[
S
n
2s
s − Cτn

] 2
2∗s−ε

. (3.8)

Hence, for ε ∈ (0,min{τ0, 2s
n−2s}), taking τ = ε in (3.8) and by elementary computations, we21

infer that22

lim sup
ε→0+

Ss,ε ≤ Ss,

which, together with (3.7), implies (3.4). The first part of the Lemma is thus proved.23
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For the second part, recalling [8, (2.5), (2.8)] we have that, fixing 0 < s0 < 1, there exist two1

positive constants λ, λ such that2

λ ≤ λ1,s(Ω) ≤ λ ∀s ∈ [s0, 1). (3.9)

Hence, from (3.6), (3.9) we deduce that there exists C > 0 depending only on n, Ω and s0 such3

that for all s ∈ [s0, 1)4

Ss,ε ≥ SsCε. (3.10)

On the other hand, let us fix s1 such that 0 < s0 < s1 ≤ 1 and let s ∈ (s0, s1), n > 2s1,5

ε ∈
(

0,min
{
τ0,

2s0
n−2s0

, 1
})

, where τ0 is given by Lemma 3.1. Then from (3.8), (3.9), choosing6

τ = ε and taking into account that 1
2 < εε ≤ 1 for any ε ∈ (0, 1), we deduce that7

Ss,ε ≤ Ss
(

Cε

(εε)α[1− Cεn]β

)
+ Cεn−2s, (3.11)

for some constants C,α, β > 0 which depend only on n, s0 and s1, but not on s and ε. Therefore,8

from (2.6), (3.10) and (3.11) we obtain9

Cε
s

n
S
n
2s
s ≤ CN (Ω)(s, ε) ≤

s

n
S
n
2s
s g(ε),

where g and C > 0 do not depend on s, and g is such that g(ε)→ 1 as ε→ 0+. Hence, setting10

g1(ε) := max{|Cε − 1|, |g(ε)− 1|} we get (3.5). The proof is then complete. �11

In the next result we describe the asymptotic behavior of CM(Ω)(s, ε), as ε→ 0+. Differently12

from the case of critical nonlinearities (see [8, Lemma 3.6]), there are some difficulties in proving13

uniform energy estimates from above which are directly related to CN (Ω)(s, ε). To overcome14

these difficulties we provide a uniform upper bound in terms of 2s
n S

n
2s
s instead, which is obtained15

by using as competitors for the energy superpositions of standard bubbles centered at the same16

point and with different concentration speeds.17

Lemma 3.3. Let s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be a smooth bounded domain. We have18

lim
ε→0+

CM(Ω)(s, ε) =
2s

n
S
n
2s
s . (3.12)

Moreover, let 0 < s0 < s1 ≤ 1 and n > 2s1. Then there exists ε̂ = ε̂(s0, s1) ∈ (0, 2∗s0 − 2) such19

that for every ε ∈ (0, ε̂)20

sup
s∈(s0,s1)

∣∣∣∣CM(Ω)(s, ε)−
2s

n
S
n
2s
s

∣∣∣∣ ≤ g2(ε), (3.13)

where the function g2 does not depend on s and g2(ε)→ 0 as ε→ 0+. The same result holds for21

Mr
s,ε(BR).22

Proof. Let us fix s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be a smooth bounded domain. We claim that23

2CN (Ω)(s, ε) ≤ CM(Ω)(s, ε). (3.14)

As an immediate consequence, from Lemma 3.2, we get that24

2s

n
S
n
2s
s ≤ lim inf

ε→0
CM(Ω)(s, ε). (3.15)

To prove (3.14) it suffices to notice that, given u ∈Ms,ε(Ω), then for every α, β > 0 it holds25

Is,ε(αu
+) + Is,ε(βu

−) ≤ Is,ε(u).

This follows from the explicit computation of Is,ε(αu
+−βu−), taking into account that (u+, u−)s <26

0 and that supt≥0

(
t2

2 −
t2
∗
s−ε

2∗s−ε

)
≤
(

1
2 −

1
2∗s−ε

)
. Hence, choosing u ∈Ms,ε(Ω) such that Is,ε(u) =27
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CM(Ω)(s, ε) and α, β in such a way that αu+, βu− ∈ Ns,ε(Ω) (which is always possible), we1

obtain the desired result.2

To conclude the proof of (3.12) we need to prove the lim sup inequality. To this end, we3

consider usτ ′ and usτ ′′ of the form (3.1), sharing all the parameters µ, ϕ, ρ, x0, apart from τ .4

To simplify the notation we assume without loss of generality that 0 ∈ Ω and we take x0 = 0.5

Moreover, we choose ρ and µ as in Lemma 3.1 so that (3.2), (3.3) hold true whenever ε is6

small enough. Finally, for the concentration parameters, we take τ ′, τ ′′ of the form τ ′ = ε
2δ

n−2s ,7

τ ′′ = ε
2

n−2s , where δ > 0 is such that8

δ > max

{
1,

(2∗s − ε)(2∗s − 1− ε)
2∗s − 2ε

, 2∗s − 1

}
.

Notice that δ = 2∗s − 1, when ε is small enough, and that it can be taken in a uniform way with9

respect to s when s ∈ [s0, s1).10

Arguing as in [8, Theorem 3.5, Step 2], we infer that11

CM(Ω)(s, ε) ≤ sup
α,β≥0

Is,ε(αu
s
τ ′ − βusτ ′′). (3.16)

To conclude we need to estimate the right-hand side of (3.16). The first crucial fact is that, in12

(3.16), it is sufficient to consider only linear combinations αusτ ′ − βusτ ′′ with α, β in a compact13

subset of R+ ∪ {0}. More precisely, we prove that there exists C̃ > 0 independent on ε (and14

depending only on s0, s1 when s ∈ [s0, s1)) such that, for any α, β ≥ 0 satisfying α + β ≥ C̃, it15

holds16

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ 0. (3.17)

Indeed, by a straightforward computation and using Lemma 3.1 we have17

‖αusτ ′ − βusτ ′′‖2s ≤ C(α+ β)2, (3.18)

for some constant C independent on both ε, τ ′, τ ′′ and s, when s ∈ [s0, s1). On the other hand,18

arguing exactly as in [8, Lemma 3.6] and using again Lemma 3.1, we infer that for any θ ∈ (0, 1)19

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε

≥ Cα2∗s−ε(τ ′)(
n−2s

2 )ε

C − (τ ′)(
n−2s

2 )(2∗s−2ε)

θ2∗s−1−ε − (τ ′)(
n−2s

2 )
2∗s

2∗s−ε−1

θ
1

2∗s−1−ε


+ β2∗s−ε(|usτ ′′ |

2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ).

(3.19)

Now, thanks to our choice of µ we have20

|usτ ′′ |∞ = usτ ′′(0) = (τ ′′)−
n−2s

2 .

Hence, recalling that τ ′′ = ε
2

n−2s and taking θ = C ′ε2∗s−ε, where C ′ will be chosen later, from21

Lemma 3.1 we obtain that22

|usτ ′′ |
2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ≥ C − C ′,

for any ε > 0 small enough, where C does not depend on ε, nor on s when s ∈ [s0, s1). Therefore,23

taking C ′ = 1
2C we get that24

|usτ ′′ |
2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ≥ 1

2
C > 0. (3.20)
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Thus, recalling that τ ′ = ε
2δ

n−2s , from (3.19), (3.20) we obtain1

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε

≥ (εε)δCα2∗s−ε
(
C − εδ(2

∗
s−2ε)−(2∗s−ε)(2

∗
s−1−ε) − ε

2∗s (δ−1)+ε

2∗s−1−ε

)
+

1

2
Cβ2∗s−ε.

Then, exploiting the properties of the function t 7→ tt and thanks to the definition of δ, we find2

C > 0 such that for all sufficiently small ε > 03

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε ≥ C(α2∗s−ε + β2∗s−ε) ≥ C(α+ β)2∗s−ε. (3.21)

Finally, thanks to (3.18) and (3.21) we infer that4

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ C(α+ β)2(1− C(α+ β)2∗s−2−ε),

which implies that there exists C̃ > 0, not depending on ε, such that if (α + β) ≥ C̃ then5

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ 0, as claimed. We observe that C̃ can be taken in a uniform way with6

respect to s, when s ∈ [s0, s1).7

It remains to treat the case α+ β ≤ C̃. To this end we begin with a preliminary estimate on8

the scalar product between two bubbles. A careful analysis of the argument carried out in [28,9

Proposition 21] shows that10

|(usτ ′ , usτ ′′)s| ≤ (τ ′)−
n−2s

2 (τ ′′)−
n−2s

2

∣∣∣(Us0,µ ( xτ ′) , Us0,µ ( xτ ′′))s
∣∣∣+ C(τ ′)

n−2s
2 (τ ′′)

n−2s
2 ,

where the constant C does not depend on τ ′ nor on τ ′′, and it is uniformly bounded with respect11

to s ∈ [s0, s1). Performing a change of variables, and recalling that Us0,µ solves (2.4), we get that12 ∣∣∣(Us0,µ ( xτ ′) , Us0,µ ( xτ ′′))s
∣∣∣ ≤ (τ ′)n−2s

∫
Rn
|Us0,µ|2

∗
s−1

∣∣∣∣Us0,µ( τ ′τ ′′x
)∣∣∣∣ dx

≤ C(τ ′)n−2s

∫
Rn

(µ2 + |x|2)−
n+2s

2 dx ≤ C(τ ′)n−2s,

where we used that |Us0,µ|∞ = 1, in view of our choice of µ, and where the constant C > 0 does13

not depend on τ ′ nor on τ ′′ and it is uniformly bounded with respect to s ∈ [s0, s1). Summing14

up, and recalling the definition of τ ′ and τ ′′, we obtain15

|(usτ ′ , usτ ′′)s| ≤ C(εδ−1 + εδ+1) ≤ Cεδ−1. (3.22)

Let us finally consider the case of α + β ≤ C̃. Arguing as in [8, Lemma 3.6] and applying16

Lemma 3.1 and (3.22), we have17

Is,ε(αu
s
τ ′ − βusτ ′′) ≤

α2

2
‖usτ ′‖2s +

β2

2
‖usτ ′′‖2s −

α2∗s−ε

2∗s − ε
|usτ ′ |

2∗s−ε
2∗s−ε −

β2∗s−ε

2∗s − ε
|usτ ′′ |

2∗s−ε
2∗s−ε

+ C

∫
Rn
|usτ ′ |2

∗
s−1−ε|usτ ′′ |dx+ C

∫
Rn
|usτ ′′ |2

∗
s−1−ε|usτ ′ |dx+ Cεδ−1

≤ α2

2
S
n
2s
s +

β2

2
S
n
2s
s −

α2∗s−ε

2∗s − ε
(εε)δ(S

n
2s
s − Cε2∗sδ)

− β2∗s−ε

2∗s − ε
(εε)(S

n
2s
s − Cε2∗s ) + Cε−1εδ(1+ε) + Cε−(2∗s−1−ε)εδ

+ Cε2δ + Cε2 + Cεδ−1,
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where we used that |usτ ′′ |∞ = ε−1. Even in this case all the appearing constants are independent1

on ε, and they are uniformly bounded with respect to s when s ∈ [s0, s1). Then, using again the2

elementary estimate supt≥0

(
t2

2 −
t2
∗
s−ε

2∗s−ε

)
≤
(

1
2 −

1
2∗s−ε

)
, we get3

Is,ε(αu
s
τ ′ − βusτ ′′) ≤

2∗s − 2− ε
2∗s − ε

S
n
2s
s + C(1− (εε)δ) + C(1− εε) + Cε2∗sδ + Cε2∗s

+ Cεδ−1+δε + Cεδ−(2∗s−1−ε) + Cε2δ + Cε2 + Cεδ−1

=:
2s

n
S
n
2s
s + g(ε),

(3.23)

where all the constants C > 0, and thus g, do not depend on s, when s ∈ [s0, s1). In particular,4

g satisfies g(ε)→ 0 as ε→ 0+.5

At the end, putting together (3.16), (3.23), taking into account (3.17), we obtain6

CM(Ω)(s, ε) ≤
2s

n
S
n
2s
s + g(ε), (3.24)

and thus we get that7

lim sup
ε→0+

CM(Ω)(s, ε) ≤
2s

n
S
n
2s
s ,

which, together with (3.15), gives (3.12).8

For the proof of the second part, fixing 0 < s0 < s1 ≤ 1, then, thanks to Lemma 3.2 and9

the definition of g, we deduce that inequalities (3.14) and (3.24) are uniform with respect to s10

when s ∈ [s0, s1). At the end, arguing as in Lemma 3.2 we obtain (3.13), for some function g211

independent on s and such that g2(ε)→ 0, as ε→ 0+.12

In the radial case the proof is identical. Indeed, since in the construction we take standard13

bubbles centered at the same point, then the functions αusτ ′−βusτ ′′ are radial and thus admissible14

competitors. The proof is then complete. �15

4. Asymptotic analysis of least energy radial sign-changing solutions16

In this section we study the asymptotic behavior of least energy radial nodal solutions to (1.2),17

as ε→ 0+. Theorem 1.1 will be a consequence of the results contained in this section. We begin18

by a couple of preliminary known results.19

Lemma 4.1. Let s ∈ (0, 1), let n > 2s and let Ω ⊂ Rn be a smooth bounded domain. Let20

(us,ε) ⊂ Ms,ε(Ω) be a family of solutions of Problem (2.5) such that Is,ε(us,ε) = CM(Ω)(s, ε)21

and set Ms,ε,± := |u±s,ε|∞. As ε→ 0+ we have:22

(i) ‖u±s,ε‖2s → S
n
2s
s ;23

(ii) |u±s,ε|
2∗s−ε
2∗s−ε → S

n
2s
s ;24

(iii) (u+
s,ε, u

−
s,ε)s → 0;25

(iv) us,ε ⇀ 0 in Xs
0(Ω);26

(v) Ms,ε,± → +∞.27

The same results hold for a family (us,ε) ⊂ Mr
s,ε(BR) of radial solutions to Problem (1.2) such28

that Is,ε(us,ε) = CMr(BR)(s, ε). Moreover, for every 0 < s0 < s1 ≤ 1 and n > 2s1, the limits29

(i)− (iii) are uniform with respect to s ∈ [s0, s1).30

Proof. It suffices to argue as in [8, Lemma 4.3], with some minor modifications. �31

The following estimate will play a central role in this paper.32
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Proposition 4.2. Let 0 < s0 < s1 ≤ 1 and let s ∈ [s0, s1), n > 2s1. Let 0 < R0 ≤ R,1

g ∈ L∞(BR) and v be a weak solution of2 {
(−∆)sv = g in BR,

v = 0 in Rn \BR,

Then v ∈ C0,s(Rn) and3

‖v‖C0,s(Rn) ≤ C|g|L∞(BR)

where the constant C > 0 depends only on n, s0, s1 and R0, but neither on s nor on R.4

Proof. The estimate is a consequence of results contained in [25]. Concerning the dependence5

on the parameters s0, s1, it can be deduced from a careful analysis of the proof in [25] (see also6

[8, Proposition 2.3]). As for the dependence of the constant C on the domain, it turns out that7

C depends only on the radii coming from the outer and inner ball conditions for BR. Hence, it8

is clear that C can be chosen in a uniform way with respect to R if we assume that R ≥ R0, for9

some R0 > 0. �10

From now on us,ε ∈Mr
s,ε(BR) will denote a least energy radial solution to Problem (1.2), i.e.11

Is,ε(us,ε) = CMr(BR)(s, ε). Moreover, we set Ms,ε := |us,ε|∞. In the next result we characterize12

the asymptotic behavior of the points where the blow-up occurs.13

Lemma 4.3. Let s ∈ (0, 1), n > 2s. Let xε ∈ BR be such that |us,ε(xε)| = O(Ms,ε) as ε→ 0+.14

Then15

Mβs,ε
s,ε |xε| 6→ +∞,

where βs,ε := 2
n+2s −

ε
2s . In particular, we infer that |xε| → 0.16

Proof. If s ∈
(

1
2 , 1
)

this is a consequence of the fractional Strauss inequality (1.3) (see [6, Propo-17

sition 1]). Indeed, suppose that xε 6= 0 (otherwise there is nothing to prove). Then18

(Mβs,ε
s,ε |xε|)

n−2s
2 = M

1− ε
2∗s−2

s,ε |xε|
n−2s

2

≤Ms,ε|xε|
n−2s

2 ≤ C|us,ε(xε)||xε|
n−2s

2 ≤ CKn,s‖us,ε‖2s ≤ C,

where, in view of Lemma 4.1-(v), we used that Ms,ε ≥ 1. Unfortunately, as pointed out in Sect.19

1, the fractional Strauss inequality does not hold in general when s ∈
(
0, 1

2

]
. To overcome this20

difficulty we use the following argument, which is valid for any s ∈ (0, 1).21

Assume by contradiction that there exists a subsequence (still denoted by ε for simplicity),22

such that M
βs,ε
s,ε |xε| → +∞ as ε→ 0+. Let us define the rescaled functions23

ũs,ε(x) =
1

Ms,ε
us,ε

(
x

M
βs,ε
s,ε

)
, x ∈ Rn. (4.1)

It is immediate to see that the functions ũs,ε satisfy24 {
(−∆)sũs,ε = |ũs,ε|2

∗
s−2−εũs,ε, in B

M
βs,ε
s,ε R

,

ũs,ε = 0 in Rn \B
M
βs,ε
s,ε R

.
(4.2)

Since by construction |ũs,ε|∞ ≤ 1 and M
βs,ε
s,ε |xε| → +∞, then from Proposition 4.2 we deduce25

that26

‖ũs,ε‖C0,s(Rn) ≤ C, (4.3)

for some C > 0 independent on ε.27
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Now we observe that, by definition of xε, there exists C1 ∈ (0, 1] such that for all sufficiently1

small ε > 0 it holds2

|ũs,ε(Mβs,ε
s,ε xε)| =

|us,ε(xε)|
Ms,ε

≥ C1 + o(ε). (4.4)

Using (4.3), (4.4) and the triangle inequality, for every τ > 0 and ξ ∈ Rn such that |ξ| ≤ 1, we3

infer that4

C1 − |ũλ(M
βs,ε
s,ε xε + τξ)|+ o(ε)

|τξ|s
≤ |ũs,ε(M

βs,ε
s,ε xε)− ũs,ε(M

βs,ε
s,ε xε + τξ)|

|τξ|s
≤ C.

In particular, we can find ε0 > 0, τ0 > 0 and C2 > 0 such that, for every ε ∈ (0, ε0), it holds5

0 < C2 ≤ C1 − Cτs0 + o(ε) ≤ |ũs,ε(Mβs,ε
s,ε xε + τ0ξ)|, ∀|ξ| ≤ 1.

Therefore, since ũs,ε is radial and ξ is arbitrary we obtain that6

0 < C2 ≤ |ũs,ε(x)|, ∀x ∈ B
M
βs,ε
s,ε |xε|+τ0

\B
M
βs,ε
s,ε |xε|−τ0

.

Now, since we are assuming by contradiction that M
βs,ε
s,ε |xε| → +∞ and since Ms,ε → +∞ we7

get that8

|us,ε|
2∗s−ε
2∗s−ε ≥M

−ε(n−2s
2s )

s,ε |us,ε|
2∗s−ε
2∗s−ε = |ũs,ε|

2∗s−ε
2∗s−ε

≥ C2∗s−ε
2 [(Mβs,ε

s,ε |xε|+ τ0)n − (Mβs,ε
s,ε |xε| − τ0)n]

= 2nC
2∗s−ε
2 τ0(Mβs,ε

s,ε |xε|)n−1 + ψ(ε),

where ψ(ε) is such that ψ(ε)

(M
βs,ε
s,ε |xε|)n−1

→ 0, as ε→ 0+. From this we get that |us,ε|
2∗s−ε
2∗s−ε → +∞,9

as ε→ 0+, which contradicts Lemma 4.1, (ii). The proof is complete. �10

In the next result we study the asymptotic behavior of the rescaled solutions defined in (4.1).11

Lemma 4.4. Let s ∈ (0, 1), n > 2s and let (ũs,ε)ε be the sequence of rescaled functions associated12

to (us,ε)ε, defined in (4.1). Then, up to a subsequence, ũs,ε → ũs in C0,α
loc (Rn) for some α ∈ (0, s),13

as ε→ 0+, where ũs ∈ Ds(Rn) is a nontrivial weak solution to14 {
(−∆)sũs = |ũs|2

∗
s−2ũs in Rn,

ũs > 0.
(4.5)

Moreover, ũs is radial and |ũs|∞ = |ũs(0)|.15

Proof. As seen in the proof of Lemma 4.3, the functions ũs,ε weakly satisfy (4.2) and by con-16

struction it holds that |ũs,ε|∞ ≤ 1. Then, since M
βs,ε
s,ε R → +∞, thanks to Proposition 4.2 and17

a standard argument, up to a subsequence, we have18

ũs,ε → ũs in C0,α
loc (Rn),

for some ũs ∈ C0,α
loc (Rn), α ∈ (0, s). We point out that ũs 6≡ 0. Indeed, let xε ∈ BR be such19

that |us,ε(xε)| = Ms,ε. By construction we have |ũs,ε(M
βs,ε
s,ε xε)| = 1, and thanks to Lemma 4.320

we infer that the point M
βs,ε
s,ε xε stays in a compact subset of Rn. Therefore, from the C0,α

loc -21

convergence of ũs,ε in Rn, we get that ũs is non trivial.22

Now we show that ũs ∈ Ds(Rn). In fact, by Lemma 4.1-(i) and since Ms,ε → +∞, we infer23

that24

‖ũs,ε‖2s = M
−ε(n−2s

2s )
s,ε ‖us,ε‖2s ≤ ‖us,ε‖2s → 2S

n
2s
s , as ε→ 0+,
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and in particular, up to a subsequence, ũs,ε ⇀ v for some v ∈ Ds(Rn). Then, since ũs,ε → ũs1

in C0,α
loc (Rn), we get that v = ũs and we are done. In addition, applying Fatou’s Lemma we also2

deduce that3

‖ũs‖2s ≤ lim inf
ε→0+

‖ũs,ε‖2s ≤ 2S
n
2s
s . (4.6)

Let us prove now that ũs is a weak solution to (4.5). Indeed, for every ϕ ∈ C∞c (Rn), since4

ũs,ε is a weak solution to (4.2) we have5

(ũs,ε, ϕ)s =

∫
B
M
βs,ε
s,ε R

|ũs,ε|2
∗
s−2−εũs,εϕdx, (4.7)

where ε is small enough so that supp ϕ ⊂ B
M
βs,ε
s,ε R

. Since ũs,ε → ũs for a.e. x ∈ Rn, using [8,6

(2.6), (2.7)] and thanks to Lebesgue’s dominated convergence theorem, passing to the limit as7

ε→ 0+ in (4.7) we infer that8 ∫
Rn
ũs(−∆)sϕdx =

∫
Rn
|ũs|2

∗
s−2ũsϕdx.

Now, since ũs ∈ Ds(Rn) we can use again [8, (2.7)], obtaining that ũs weakly satisfies9

(−∆)sũs = |ũs|2
∗
s−2ũs in Rn. (4.8)

We prove now that ũs is of constant sign. To this end, assume by contradiction that ũs is sign-10

changing. Then, using ũ±s ∈ Ds(Rn) as test functions in (4.8) and recalling that (ũ+
s , ũ

−
s )s < 0,11

we get that12

‖ũ±s ‖2s = (ũ+
s , ũ

−
s )s + |ũ±s |

2∗s
2∗s
< |ũ±s |

2∗s
2∗s
.

Hence, by the Sobolev inequality we infer that13

Ss ≤
‖ũ±s ‖2s
|ũ±s |22∗s

< |ũ±s |
2∗s−2
2∗s

,

and thus 2S
n
2s
s < |ũ+

s |
2∗s
2∗s

+ |ũ−s |
2∗s
2∗s

= |ũs|
2∗s
2∗s

. Finally, using ũs as a test function in (4.8) we have14

‖ũs‖2s = |ũs|
2∗s
2∗s

, and we obtain that 2S
n
2s
s < ‖ũs‖2s, which contradicts (4.6).15

At the end we notice that, since ũs is a pointwise limit of radial functions, it is radial too.16

Moreover, since ũs is of constant sign, assuming without loss of generality that ũs ≥ 0, we easily17

deduce, by the fractional strong maximum principle and the fractional moving plane method (see18

[5]), that ũs is also decreasing along the radii and thus ũs achieves its maximum at the origin.19

The proof is complete. �20

A consequence of the above result is that least energy radial sign-changing solutions to (1.2)21

cannot vanish at the origin.22

Lemma 4.5. Let s ∈ (0, 1) and n > 2s. There exist ε > 0 and C > 0 such that for every23

ε ∈ (0, ε) it holds24

|us,ε(0)| ≥ C. (4.9)

Moreover, for every 0 < s0 < s1 ≤ 1, n > 2s1 estimate (4.9) holds with ε > 0, C > 0 independent25

on s ∈ [s0, s1).26

Proof. We prove directly the second part of the Lemma. Assume by contradiction that there27

exist 0 < s0 < s1 ≤ 1, three sequences εk → 0+, Ck → 0+, (sk)k ∈ [s0, s1), and a sequence of28

nodal radial least energy solutions uk := usk,εk such that |uk(0)| < Ck. Up to a subsequence, we29

can always assume that sk → σ, with σ ∈ [s0, s1].30

Now, only two possibilities can occur: setting Mk := |uk|∞, either (Mk)k is a bounded31

sequence or there exists a subsequence such that Mk → +∞.32



SIGN-CHANGING BUBBLE-TOWER SOLUTIONS 15

Assume that (Mk)k is bounded. We first observe that (Mk)k is bounded away from zero,1

otherwise we could find a subsequence such that Mk → 0, but this would contradict Lemma2

4.1. Therefore, up to a subsequence we can assume that Mk → l, for some real number l > 0.3

Adapting the arguments of Lemma 4.4 and using Lemma 3.3 we readily infer that, up to a4

subsequence, uk ⇀ u in Xs0
0 (BR) and uk → u in C0,α(Rn), for some α ∈ (0, s0). Furthermore5

we have u 6≡ 0 and it holds that6 ∫
Rn
u(−∆)σϕdx =

∫
Rn
|u|2

∗
σ−2uϕdx ∀ϕ ∈ C∞c (BR).

Using that uk → u in L2(BR), thanks to the fractional Sobolev embedding and Fatou’s Lemma7

we find8

‖u‖2σ =

∫
Rn
|ξ|2σ|û(ξ)|2 dx ≤ lim inf

k→+∞

∫
Rn
|ξ|2sk |ûk(ξ)|2 dx = lim inf

k→+∞
‖u‖2s ≤

2σ

n
S

n
2σ
σ , (4.10)

where the last inequality is a consequence of the second part of Lemma 3.3, while the equalities9

are due to the interpretation via the Fourier transform of the fractional Laplacian (see e.g. [11]).10

From this discussion it follows that u is a non trivial weak solution of11 {
(−∆)σu = |u|2∗σ−2u in BR,

u = 0 in Rn \BR.
(4.11)

This readily contradicts the Pohozaev identity when σ = 1. If σ < 1, the fractional Pohozaev12

identity only implies the nonexistence of constant-sign solutions to (4.11) (see [26]). In order to13

obtain a contradiction we show that u is of constant sign. Indeed, arguing as in the proof of14

Lemma 4.4, we have that any sign-changing solution u to (4.11) must satisfy ‖u‖2σ > 2σ
n S

n
2σ
σ .15

Hence, thanks to (4.10) it follows that u is of constant sign and we get the desired contradiction.16

17

Let us analyze the second case. Assume that Mk → +∞ and consider the rescaled functions18

ũk(x) =
1

Mk
uk

(
x

Mβk
k

)
, x ∈ Rn,

where βk = 2
n−2sk

− εk
2sk

. Arguing as in Lemma 4.4, and taking into account Lemma 3.3, we19

obtain that ũk → ũ in C0,α
loc (Rn), as k → +∞, for some α ∈ (0, s0), where the function ũ belongs20

to Dσ(Rn) ∩ C0,α
loc (Rn) \ {0}, it is radial, verifies |ũ|∞ = |ũ(0)| and weakly satisfies21 {

(−∆)σũ = |ũ|2∗σ−2ũ in Rn,
ũ > 0.

The only delicate point is when σ = 1. Indeed, in this case we cannot simply argue via Fatou’s22

Lemma to show that ũ ∈ D1(Rn). Nevertheless, since23

|ũ|2
∗
1

2∗1
≤ lim inf

k→+∞
|ũk|

2∗sk
2∗sk
≤ lim inf

k→+∞
S
−

2∗sk
2

sk ‖ũk‖
2∗sk
2

sk ≤ C,

we have that ũ ∈ L2∗1 (Rn). Therefore we can apply [14, Theorem 2, Corollary 3], obtaining that24

ũ ∈ D1(Rn) and ‖ũ‖21 = |ũ|2
∗
1

2∗1
.25

To conclude notice that, since we are assuming |ũk(0)| = 1
Mk
|uk(0)| → 0 and since we have26

ũk → ũ in C0,α
loc (Rn), then it follows that |ũ(0)| = 0, which contradicts the non triviality of ũ.27

The proof is then complete. �28
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In the next lemma we show, independently on the number of sign-changes, that Ms,ε is1

achieved in the nodal component containing the origin and blows-up faster than every other2

extremal value achieved in the other components. Before stating the result we introduce some3

notation. Assuming without loss of generality that us,ε(0) > 0, thanks to Lemma 4.5, for all4

sufficiently small ε > 0 the following quantities are well defined:5

r1
ε := min{r ∈ (0, R] ; us,ε(x) = 0, |x| = r},
M+
s,ε := max{us,ε(x) ; 0 ≤ |x| ≤ r1

ε},

M̂s,ε := max{|us,ε(x)| ; r1
ε ≤ |x| ≤ R}.

In other words, r1
ε is the first nodal radius, M+

s,ε is the maximum of the solution in the first nodal6

component, while M̂s,ε is the absolute maximum achieved in the other nodal components.7

Lemma 4.6. Let s ∈ (0, 1) and n > 2s. There exists ε′ > 0 such that for every ε ∈ (0, ε′) it8

holds9

Ms,ε = M+
s,ε.

Moreover, up to a subsequence, as ε→ 0+
10

(i) (M+
s,ε)

βs,εr1
ε → +∞, (ii)

M+
s,ε

M̂s,ε

→ +∞.

Proof. We begin by proving that Ms,ε = M+
s,ε. Suppose by contradiction that there exists a11

sequence ε → 0+ such that Ms,ε = M̂s,ε. By Lemma 4.3 we get that M
βs,ε
s,ε |xε| 6→ ∞, where xε12

is any point such that |us,ε(xε)| = Ms,ε. Notice that by construction we have |xε| ≥ r1
ε and thus13

M
βs,ε
s,ε r1

ε 6→ +∞ too.14

As a consequence, up to a subsequence, M
βs,ε
s,ε r1

ε → l for some real number l ≥ 0. Let ũs,ε15

be the rescaling defined in (4.1). Then, by Lemma 4.4 we infer that ũs,ε → ũs in C0,α
loc (Rn) for16

some α ∈ (0, s), ũs ∈ C0,α
loc (Rn). On the other hand, let (yε) ⊂ Rn be such that |yε| = r1

ε . Up to17

a further subsequence, M
βs,ε
s,ε yε → ŷ as ε → 0+, where |ŷ| = l. Then, thanks to Proposition 4.218

and since ũs,ε(M
βs,ε
s,ε yε) = 0, ũs,ε → ũs a.e., we get that19

|ũs(ŷ)| ≤ |ũs,ε(ŷ)− ũs,ε(Mβs,ε
s,ε yε)|+ |ũs,ε(ŷ)− ũs(ŷ)| ≤ C|ŷ −Mβs,ε

s,ε yε|α + o(1) = o(1).

From this we deduce that ũ(ŷ) = 0, which contradicts the strict positivity of ũ (see Lemma 4.4).20

The proof of (i) is identical and we omit it. Let us prove (ii). Let xε ∈ Rn be such that21

|us,ε(xε)| = M̂s,ε. We claim that ũs,ε(M
βs,ε
s,ε xε)→ 0.22

Indeed, if it is not the case, up to a subsequence, we find c ∈ (0, 1] such that ũs,ε(M
βs,ε
s,ε xε)→ c.23

Thanks to Proposition 4.2 and arguing as in the proof of Lemma 4.3 we obtain that there exists24

a positive constant C1 and a small positive number τ0, both independent on ε, such that for all25

sufficiently small ε > 026

|ũs,ε| ≥ C1 > 0, ∀x ∈ B
M
βs,ε
s,ε |xε|+τ0

\B
M
βs,ε
s,ε |xε|−τ0

.

Since M
βs,ε
s,ε |xε| > M

βs,ε
s,ε r1

ε → +∞, because of (i), we obtain that |ũs,ε|
2∗s−ε
2∗s−ε → +∞, which27

contradicts Lemma 4.1-(ii). The claim is thus proved.28

Now, in order to conclude the proof of (ii), we notice that29

1 =
|us,ε(xε)|
M̂s,ε

=
|ũs,ε(M

βs,ε
s,ε xε)|Ms,ε

M̂s,ε

,

and thanks to the previous claim we obtain the desired result.30

�31
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An immediate consequence of the previous result is the following1

Lemma 4.7. Let s ∈ (0, 1) and n > 2s. The function ũs given by Lemma 4.4 is a standard2

bubble centered at the origin, i.e. ũs is of the form (2.3) with x0 = 0.3

Proof. Since ũs is radial and satisfies (4.5), in order to prove the desired result we only need4

to show that ũs realizes the infimum in the fractional Sobolev inequality (2.1). Now, since5

‖ũs‖2s = |ũs|
2∗s
2∗s

, by the Sobolev inequality, we readily infer that Ss ≤ |ũs|
2∗s−2
2∗s

, and to conclude it6

suffices to show that |ũs|
2∗s
2∗s
≤ S

n
2s
s . To this end, we set7

u1
s,ε(x) :=

{
us,ε(x) |x| ≤ r1

ε ,

0 otherwise,

and define8

ũ1
ε(x) :=

1

M+
s,ε
u1
s,ε

(
x

(M+
s,ε)βs,ε

)
, x ∈ Rn.

Thanks to Lemma 4.6, for all sufficiently small ε > 0 we have Ms,ε = M+
s,ε. Then we readily9

infer that |ũs,ε − ũ1
s,ε|∞ ≤

M̂s,ε

Ms,ε
which, again by Lemma 4.6, implies that ũs,ε − ũ1

s,ε → 010

uniformly in Rn, as ε → 0+. Then, by Fatou’s Lemma, taking into account that |ũ1
s,ε|

2∗s−ε
2∗s−ε =11 (

M+
s,ε

)−ε(n−2s
2s ) |u1

s,ε|
2∗s−ε
2∗s−ε, M

+
s,ε ≥ 1 and Lemma 4.1, we get that12

|ũs|
2∗s
2∗s
≤ lim inf

ε→0+
|ũ1
s,ε|

2∗s−ε
2∗s−ε ≤ lim inf

ε→0+
|u1
s,ε|

2∗s−ε
2∗s−ε ≤ lim inf

ε→0+
|u+
s,ε|

2∗s−ε
2∗s−ε = S

n
2s
s .

The proof is then complete.13

�14

5. Characterization of the nodal set15

In this section we study the nodal set of least energy radial sign-changing solutions to Problem16

(1.2). We begin with a couple of known preliminary results, which provide, respectively, an upper17

bound on the number of sign changes and a characterization of the nodal set.18

Lemma 5.1. Let n > 2s, s ∈ (0, 1). Let us,ε be a least energy radial sign-changing solution to19

Problem (1.2). There exists ε̃s ∈ (0, 2∗s − 2) such that, if ε ∈ (0, ε̃s), then us,ε = us,ε(r) changes20

sign at most twice.21

Let 0 < s0 < s1 ≤ 1 and n > 2s1. Then there exists ε̃ > 0, independent on s, such that the22

same result holds for every s ∈ [s0, s1) and ε ∈ (0, ε̃).23

Proof. It suffices to argue as in [8, Theorem 5.1] first, and then as in [8, Theorem 5.2], taking24

into account Lemma 3.3 and Lemma 4.1. �25

Lemma 5.2. Let s ∈ (0, 1) and n > 2s. There exists ε̌s > 0 such that for all ε ∈ (0, ε̌s) any26

least energy radial sign-changing solution us,ε to (1.2) vanishes only at the nodes.27

Moreover, let 0 < s0 < s1 ≤ 1, n > 2s1. Then the above result hold true for every s ∈ [s0, s1)28

and ε ∈ (0, ε̌), for some ε̌ > 0 independent on s.29

Proof. It suffices to take ε̌s := min{εs, ε̃s}, where εs, ε̃s are given by Lemma 4.5 and Lemma 5.1,30

respectively. Then, the results follows immediately by adapting the arguments of [8, Theorem31

1.2]. �32

In the next Lemma we prove the upper semi-continuity of the map s 7→ CMr(BR)(s, ε).33
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Lemma 5.3. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̌), where ε̌ is given by Lemma 5.2. Then1

for every σ ∈ [s0, s1] we have2

lim sup
s→σ

CMr(BR)(s, ε) ≤ CMr(BR)(σ, ε).

Proof. Let us fix s0, s1, n and ε as in the statement. Let (sk)k ⊂ [s0, s1) be a sequence such3

that sk → σ ∈ [s0, s1], and consider a radial solution uσ,ε of (1.2) which realizes CMr(BR)(σ, ε).4

Assume that σ < 1. We aim to construct a sequence of almost minimizers of CMr (sk, ε). We5

proceed in three different steps. We point out that when σ = 1 the proof is identical, taking6

into account the conventions (−∆)1u = −∆u, ‖u‖21 = |∇u|22, and that (u+, u−)1 ≡ 0 for all7

u ∈ H1
0 (BR).8

Step 1. There exists a sequence (ϕj)j ⊂ C∞c (BR) ∩Mr
σ,ε(BR) such that9

(1) supp(ϕ±j ) ⊂ supp (u±σ,ε),10

(2) ϕj → uσ,ε in Xσ
0 (BR), as j → +∞,11

(3) Iσ,ε(ϕj)→ Iσ,ε(uσ,ε), as j → +∞.12

We first observe that, thanks to Lemma 5.2, the boundaries of supp (u±σ,ε) consist in a finite13

union of spheres. Therefore, adapting known density results (see e.g. [15]) we find two sequences14

of radial functions (ϕ̃±j )j ⊂ C∞c (BR) such that ϕ̃±j ≥ 0, supp(ϕ̃±j ) ⊂ supp (u±σ,ε) for all j,15

and ϕ̃±j → u±σ,ε in Xσ
0 (BR). Observe that, from the continuity of the scalar product, we have16

(ϕ̃+
j , ϕ̃

−
j )σ → (u+

σ,ε, u
−
σ,ε)σ.17

Now we recall that it is always possible to find αj > 0, βj > 0 such that αjϕ̃
+
j − βjϕ̃

−
j ∈18

Mr
σ,ε(BR) (see e.g. [8, Remark 3.4]), which is equivalent to solving the following19

α
2∗σ−2−ε
j |ϕ̃+

j |
2∗σ−ε
2∗σ−ε +

βj
αj

(ϕ̃+
j , ϕ̃

−
j )σ = ‖ϕ̃+

j ‖
2
σ,

β
2∗σ−2−ε
j |ϕ̃−j |

2∗σ−ε
2∗σ−ε +

αj
βj

(ϕ̃+
j , ϕ̃

−
j )σ = ‖ϕ̃−j ‖

2
σ.

(5.1)

We claim that, definitely, 0 < α < αj < α and 0 < β < βj < β, for some positive constants20

α, α, β, β. Indeed, since ϕ̃±j → u±σ,ε, and u±σ,ε are non trivial, then the quantities |ϕ̃±j |
2∗σ−ε
2∗σ−ε, ‖ϕ̃

±
j ‖2σ,21

(ϕ̃+
j , ϕ̃

−
j )σ are uniformly bounded and uniformly away from zero. Moreover, by the definition of22

the scalar product we always have (ϕ̃+
j , ϕ̃

−
j )σ < 0. Then, treating (5.1) as an algebraic system23

in αj , βj having as coefficients |ϕ̃±j |
2∗σ−ε
2∗σ−ε, ‖ϕ̃

±
j ‖2σ, (ϕ̃+

j , ϕ̃
−
j )σ, it is easy to verify that, up to a24

sequence, it cannot happen that αj → +∞ or αj → 0+, and the same holds for βj . The claim25

is thus proved.26

Let us consider the sequence defined by ϕj := αjϕ̃
+
j −βjϕ̃

−
j . By construction (ϕj)j ⊂ C∞c (BR),27

and in view of (5.1) we have (ϕj)j ⊂Mr
σ,ε(BR). We claim that ϕj → uσ,ε in Xσ

0 (BR).28

Indeed, observe that, since uσ,ε ∈Mr
σ,ε(BR), then29

‖u±σ,ε‖2σ = |u±σ,ε|
2∗σ−ε
2∗σ−ε + (u+

σ,ε, u
−
σ,ε)σ,

then, up to a sequence, setting α := limj→+∞ αj , β := limj→+∞ βj and passing to the limit in30

(5.1) we infer that31

α(α2∗σ−2−ε − 1)|u+
σ,ε|

2∗σ−ε
2∗σ−ε = −(β − α)(u+

σ,ε, u
−
σ,ε)σ,

β(β2∗σ−2−ε − 1)|u−σ,ε|
2∗σ−ε
2∗σ−ε = −α(α2∗σ−2−ε − 1)|u+

σ,ε|
2∗σ−ε
2∗σ−ε.
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Recalling that (u+
σ,ε, u

−
σ,ε)σ < 0 it is immediate to see that both 0 < α < 1 and α > 1 lead to a1

contradiction. Hence α = 1, and as a consequence we obtain that β = 1. Finally, from this and2

since3

‖uσ,ε − ϕj‖σ ≤ |αj − 1|‖ϕ̃+
j ‖σ + |βj − 1|‖ϕ̃−j ‖σ + ‖ϕ̃+

j − u
+
σ,ε‖σ + ‖ϕ̃−j − u

−
σ,ε‖σ,

we obtain that ϕj → uσ,ε in Xσ
0 (BR), as j → +∞. At the end, the last point of Step 1 is a4

straightforward consequence of the strong convergence of ϕj to uσ,ε, together with the fractional5

Sobolev embedding. The proof of Step 1 is complete.6

Step 2. Let (ϕj)j ∈ C∞c (BR) ∩ Mr
σ,ε(BR) be the sequence given by Step 1. Let (sk)k be a7

sequence such that sk → σ, as k → +∞. For every j fixed, we claim that there exists a sequence8

(ϕj,k)k ⊂ C∞c (BR) such that ϕj,k ∈Mr
sk,ε

(BR) for every k, and9

‖ϕj,k‖sk → ‖ϕj‖σ, Isk,ε(ϕj,k)→ Iσ,ε(ϕj), as k → +∞.

Let us fix j and let ϕj be as in the statement. From [8, (2.7)] and [12, Lemma 2.4], as10

k → +∞ we have ‖ϕ±j ‖sk → ‖ϕ
±
j ‖σ and ‖ϕj‖sk → ‖ϕj‖σ. This easily implies that (ϕ+

j , ϕ
−
j )sk →11

(ϕ+
j , ϕ

−
j )σ, while by a standard computation we get that |ϕ±j |

2∗sk
−ε

2∗sk
−ε → |ϕ

±
j |

2∗σ−ε
2∗σ−ε.12

Let αk = α(j, k) > 0, βk = β(j, k) > 0 be such that αkϕ
+
j − βkϕ

−
j ∈ Mr

sk,ε
(BR) and define13

ϕj,k := αkϕ
+
j − βkϕ

−
j . Arguing as in Step 1 we get that, up to a subsequence, αk, βk → 1 as14

k → +∞. This easily implies that ‖ϕj,k‖sk → ‖ϕj‖σ and |ϕj,k|
2∗sk
−ε

2∗sk
−ε → |ϕj |

2∗σ−ε
2∗σ−ε, as k → +∞.15

The proof of step 2 is complete.16

Step 3. Conclusion.17

Let (sk)k ⊂ (0, 1) be a sequence such that sk → σ. Let us fix a small number τ > 0. Thanks18

to Step 1, there exists a function ϕτ ∈ C∞c (BR) ∩Mr
σ,ε(BR) such that19

|Iσ,ε(uσ,ε)− Iσ,ε(ϕτ )| < τ

2
.

On the other hand, thanks to Step 2 there exist k̂ = k̂(τ) > 0 and a sequence of functions (ϕk)k20

such that ϕk ∈ C∞c (BR) ∩Mr
sk,ε

(BR) and21

|Isk,ε(ϕk)− Iσ,ε(ϕτ )| < τ

2
, ∀k ≥ k̂(τ).

As a consequence, we get that22

|Isk,ε(ϕk)− Iσ,ε(uσ,ε)| < τ, ∀k ≥ k̂(τ).

Therefore, since uσ,ε is a minimizer and ϕk ∈Mr
sk,ε

(BR), we infer that for all k ≥ k̂(τ)23

CMr(BR)(sk, ε) ≤ Isk,ε(ϕk) ≤ CMr(BR)(σ, ε) + τ.

Taking the lim sup as k → +∞ we get that24

lim sup
k→+∞

CMr(BR)(sk, ε) ≤ CMr(BR)(σ, ε) + τ,

and since τ > 0 is arbitrary we obtain the desired result. The proof is then complete. �25

In the next result we prove a uniform bound with respect to s for the L∞-norm of the solutions.26



SIGN-CHANGING BUBBLE-TOWER SOLUTIONS 20

Lemma 5.4. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̂), where ε̂ is given by Lemma 3.3. Then1

there exists C > 0, depending on ε but not on s, such that2

C−1 ≤ sup
s∈[s0,s1)

|us,ε|∞ ≤ C,

for every least energy radial sign-changing solution us,ε ∈Mr
s,ε(BR) of (2.5).3

Proof. Let us fix s0, s1, n and ε as in the statement. The first inequality is trivial. As for the4

second one, from [22, Theorem 3.2] there exists M ∈ C(R+) such that5

|us,ε|∞ ≤M(|us,ε|2∗s ).

A careful analysis of the proof shows that the function M can be chosen in such a way that it6

depends only on n,R, s0, s1 and ε, but not on s. Since us,ε ∈Mr
s,ε(BR) ⊂ Ns,ε(BR) and us,ε is7

a least energy sign-changing solution to (1.2), we infer that8

CMr(BR)(s, ε) =
2∗s − 2− ε
2(2∗s − ε)

‖us,ε‖2s. (5.2)

Thus, thanks to the fractional Sobolev embedding and Lemma 3.3 we deduce that |us,ε|2∗s ≤ C1,9

for some constant C1 > 0 independent on s. Similarly, using that 2CN (BR)(s, ε) ≤ CMr(BR)(s, ε)10

and Lemma 3.2 we obtain that |us,ε|2∗s ≥ C0 > 0, where C0 does not depend on s, and the11

desired result easily follows. The proof is complete. �12

In the next result we study the asymptotic behavior of the solutions as s goes to some limit13

value.14

Lemma 5.5. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̂), where ε̂ is given by Lemma 3.3. Let15

sk → σ, where σ ∈ [s0, s1], and let (usk,ε)k be a sequence of least energy nodal radial solution to16

(1.2). Then17

usk,ε → uσ,ε in C0,s0
loc (Rn),

where uσ,ε ∈Mr
σ,ε(BR) weakly satisfies18 {

(−∆)suσ,ε = |uσ,ε|2
∗
σ−2−εuσ,ε in BR,

uσ,ε = 0 in Rn \BR.

In addition, it holds that19

lim
sk→σ

Isk,ε(usk,ε) = Iσ,ε(uσ,ε).

Proof. It suffices to argue as in [8, Theorem 6.7], taking into account Lemma 3.3 and Lemma20

5.4. �21

As a corollary of the previous results we obtain the continuity of the map s 7→ CMr(BR)(s, ε).22

Proposition 5.6. Let 0 < s0 < s1 ≤ 1, n > 2s1 and let ε ∈ (0, ε̌), where ε̌ is given by Lemma23

5.2. Let (sk)k ⊂ [s0, s1), σ ∈ [s0, s1], (usk,ε)k and uσ,ε be as is Lemma 5.5. Then uσ,ε is a least24

energy solution, that is, Iσ,ε(uσ,ε) = CMr(BR)(σ, ε).25

In particular, for any ε ∈ (0, ε̌) the map from [s0, s1] to R, defined by s 7→ CMr(BR)(s, ε), is26

continuous.27

Proof. Fixing s0, s1, n, ε as in the statement, applying both Lemma 5.3 and Lemma 5.5, since28

0 < ε̌ < ε̂, we infer that29

CMr(BR)(σ, ε) ≤ Iσ,ε(uσ,ε) = lim
s→σ

Is,ε(us,ε) = lim
s→σ

CMr(BR)(s, ε) ≤ CMr(BR)(σ, ε),

which implies both stated results. �30
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The following Lemma grants that every least energy nodal radial solution in a ball changes1

sign exactly once, when s is close to one.2

Lemma 5.7. Let s0 ∈ (0, 1) and n ≥ 3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), there3

exists s̄ = s̄(ε) ∈ (0, 1) such that for any s ∈ (s̄, 1) any least energy radial sign-changing solution4

us,ε to (1.2) changes sign exactly once.5

Proof. We begin by recalling that, in the local case, when n ≥ 3 there exists ε1 > 0 such that,6

for every ε ∈ (0, ε1), least energy radial sing-changing solutions to7 {
−∆u = |u|2∗1−2−εu in BR,

u = 0 in Rn \BR,
(5.3)

change sign exactly once (see e.g. [3]). Now, let us fix s0 ∈ (0, 1) and define ε0 := min{ε̌, ε1},8

where ε̌ is given by Lemma 5.2 for s0 and s1 = 1. Let us fix ε ∈ (0, ε0) and assume by9

contradiction that there exist (sk)k ⊂ [s0, 1) such that sk → 1− and a sequence (usk,ε)k of least10

energy radial sign-changing solutions in BR which change sign exactly twice for any k (these11

functions change sign at most twice in view of Lemma 5.2). Then, by Proposition 5.6 we have12

that usk,ε → u1,ε in C0,α
loc (Rn), for some α ∈ (0, s0), and that u1,ε is a least energy sing-changing13

solution to (5.3). In particular, in view of our choice of ε, u1,ε changes sign exactly once.14

On the other hand, arguing as in the proof of [8, Theorem 1.3], we infer that the number of15

sign changes is preserved when passing to the limit as s→ 1− and thus u1,ε has to change sign16

twice. This gives a contradiction and concludes the proof. �17

Finally, we can state and prove Theorem 5.8. We first recall that, when speaking of a L2(BR)-18

continuous family A = {vs,ε}s∈[s0,1) of least energy nodal radial solutions to Problem (1.2), we19

mean a map Φ : [s0, 1) → L2(BR) such that Φ is continuous and Φ(s) = vs,ε ∈ Mr
s,ε(BR) is a20

least energy radial sign-changing solution to Problem (1.2) for any s ∈ [s0, 1).21

Theorem 5.8. Let s0 ∈ (0, 1) and n ≥ 3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), if22

there exists a L2(BR)-continuous family A = {vs,ε}s∈[s0,1) of least energy nodal radial solutions23

to Problem (1.2), then every element of the family changes sign exactly once.24

Proof. Let us fix s0 ∈ (0, 1), and let ε0 > 0 be the number given by Lemma 5.7. Let us fix25

ε ∈ (0, ε0) and observe that, in view of Lemma 5.7, there exists s̄ ∈ (0, 1) such that for any26

s ∈ (s̄, 1), every least energy radial sign-changing solution to (1.2) changes sign only once. Let27

us fix s1 ∈ (s̄, 1), let A be as in the statement, and set28

Sε := {s ∈ [s0, s1] ; vs,ε changes sign exactly once}.

In view of the previous disccusion Sε is not empty. We claim that Sε is closed.29

Indeed, let (sk)k ⊂ Sε be a sequence such that sk → σ, for some σ ∈ [s0, s1], and consider30

the associated sequence (vsk,ε)k ⊂ A. By Lemma 5.5 and thanks to Proposition 5.6, up to a31

subsequence, we have vsk,ε → uε in C0,α(BR) for some α ∈ (0, s0), where uε ∈ Xσ
0 (BR) is a32

least energy nodal radial solution of (1.2) with s = σ. In particular, vsk,ε → uε in L2(BR) and,33

since we are assuming that A is L2(BR)-continuous, it holds that uε = vσ,ε ∈ A. Now, taking34

into account Lemma 5.2, since vsk,ε → uε in C0,α(BR) and vsk,ε changes sign once for all k, we35

infer that the only possibility is that vσ,ε changes sign only once. Hence σ ∈ Sε, and the claim36

is proved.37

We claim that Sε is open. To prove the claim we show that the complementary set Sc
ε is38

closed. By definition and thanks to Lemma 5.2 we have39

Sc
ε = {s ∈ [s0, s1] ; vs,ε changes sign exactly twice}.
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Let (sk)k ⊂ Sc
ε be such that sk → σ for some σ ∈ [s0, s1], as k → +∞. Arguing as before, up to1

a subsequence, we get that vsk,ε → vσ,ε in C0,α(BR), for α ∈ (0, s0).2

Let us denote by 0 < r′k < r′′k < R the nodes of vsk,ε(r) = vsk,ε(x), |x| = r. We observe that3

r′k 6→ 0. Indeed, if r′k → 0, as k → +∞, as a consequence of the C0,α-convergence we infer that4

vσ,ε(0) = 0. But this contradicts Lemma 5.2, and we are done.5

Secondly, we claim that r′k − r′′k 6→ 0. Indeed, assume by contradiction that r′k − r′′k → 0.6

Thanks to Lemma 5.4 we get that7

|v−sk,ε|
2∗sk
−ε

2∗sk
−ε =

∫
Br′′

k
\Br′

k

|v−sk,ε|
2∗sk
−ε dx

≤ C|vsk,ε|
2∗sk
−ε

∞

∫ r′′k

r′k

ρn−1 dρ ≤ C ((r′′k)n − (r′k)n)→ 0.

(5.4)

On the other hand, since vsk,ε ∈Mr
sk,ε

(BR) and thanks to Lemma 3.2 we find a constant C > 08

independent on k such that9

CεSsk ≤ Ssk,ε ≤
‖v−sk,ε‖

2
sk

|v−sk,ε|22∗sk−ε
< |v−sk,ε|

2∗sk
−2−ε

2∗sk
−ε . (5.5)

Hence, |v−sk,ε|
2∗sk
−2−ε

2∗sk
−ε is bounded away from zero and this contradicts (5.4).10

It remains to prove that r′′k 6→ R. To this end, we first point out that, thanks [25, Theorem11

1.2], it holds12 ∥∥∥vsk,ε
δsk

∥∥∥
C0,α(BR)

≤ C|vsk,ε|
2∗sk
−1−ε

∞ ,

where 0 < α < min{s, 1− s},13

δs(x) := d(x, ∂BR))s = (R− |x|)s and
vsk,ε
δsk

(R) := lim
τ→0

vsk,ε(R− τ)

δsk(R− τ)
.

A careful analysis of the proof shows that the constant C > 0 is uniform for s ∈ [s0, s1] because14

s1 is strictly less than one. Moreover we can fix α by choosing 0 < α < min{s0, 1− s1}.15

Assume now by contradiction that R − r′′k → 0 as k → +∞. Since vsk,ε(r
′′
k) = 0, using the16

previous estimate and Lemma 5.4, we have17 ∣∣∣vsk,ε
δsk

(R)
∣∣∣ =

∣∣∣∣vsk,εδsk
(R)− vsk,ε(r

′′
k)

δsk(r′′k)

∣∣∣∣ ≤ C|R− r′′k |α → 0. (5.6)

On the other hand, applying the fractional Pohozaev identity (see [26]) to (1.2) we get that18

2n− (n− 2sk)(2∗sk − ε)
2∗sk − ε

|vsk,ε|
2∗sk
−ε

2∗sk
−ε = Γ(1 + sk)2R|∂BR|

∣∣∣vsk,ε
δsk

(R)
∣∣∣2

which, together with (5.6), implies that |vsk,ε|
2∗sk
−ε

2∗sk
−ε → 0 as sk → σ, thus contradicting (5.5).19

From this discussion it follows that r′k and r′′k definitely stay in the interior of the domain,20

away from the origin and their distance does not tend to zero. Thanks to the C0,α-convergence21

and by Lemma 5.2 we infer that also vσ,ε changes sign exactly twice. Hence σ ∈ Sc
ε, and thus Sc

ε22

is a closed set. At the end, Sε is not empty, it is both open and closed, and thus Sε = [s0, s1].23

Since by construction s1 > s̄ we conclude that every element of A changes sign exactly once.24

The proof is complete. �25
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