We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci’s operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonex- istence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.

New concentration phenomena for a class of radial fully nonlinear equations / G. Galise, A. Iacopetti, F. Leoni, F. Pacella. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 37:5(2020 Oct), pp. 1109-1141. [10.1016/j.anihpc.2020.03.003]

New concentration phenomena for a class of radial fully nonlinear equations

A. Iacopetti;
2020

Abstract

We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirichlet problems in a ball, driven by the extremal Pucci’s operators and with a power nonlinear term. We first determine a new critical exponent related to the existence or nonex- istence of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as the exponents approach the critical values, showing that new concentration phenomena occur. Finally we define a suitable weighted energy for these solutions and compute its limit value.
Fully nonlinear equations, Concentration phenomena, Critical Exponents; Fully nonlinear Dirichlet problems; Radial solutions; Sign-changing solutions; Asymptotic analysis;
Settore MAT/05 - Analisi Matematica
ott-2020
mar-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
NewConcentrationPhenomena_postprint.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 413.25 kB
Formato Adobe PDF
413.25 kB Adobe PDF Visualizza/Apri
1-s2.0-S0294144920300317-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 549.13 kB
Formato Adobe PDF
549.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/770354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact