In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.

Learning Behavioral Representations of Human Mobility / M.L. Damiani, A. Acquaviva, F. Hachem, M. Rossini - In: SIGSPATIAL '20: Proceedings / [a cura di] L. Chang-Tien , F. Wang, G. Trajcevski, Y. Huang, S. Newsam, L. Xiong. - [s.l] : ACM, 2020. - ISBN 978145038019-5. - pp. 1-10 (( Intervento presentato al 28. convegno International Conference on Advances in Geographic Information Systems tenutosi a Seattle nel 2020 [10.1145/3397536.3422255].

Learning Behavioral Representations of Human Mobility

M.L. Damiani
;
F. Hachem;M. Rossini
2020

Abstract

In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.
No
English
Mobility; machine learning
Settore INF/01 - Informatica
Intervento a convegno
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Next-generation Ultra-Wideband Localization and Communication for the Internet of Things
   NG-UWB
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017T3S5JB_002
SIGSPATIAL '20: Proceedings
L. Chang-Tien , F. Wang, G. Trajcevski, Y. Huang, S. Newsam, L. Xiong
ACM
2020
1
10
10
978145038019-5
Volume a diffusione internazionale
No
International Conference on Advances in Geographic Information Systems
Seattle
2020
28
Convegno internazionale
Intervento inviato
manual
Aderisco
M.L. Damiani, A. Acquaviva, F. Hachem, M. Rossini
Book Part (author)
partially_open
273
Learning Behavioral Representations of Human Mobility / M.L. Damiani, A. Acquaviva, F. Hachem, M. Rossini - In: SIGSPATIAL '20: Proceedings / [a cura di] L. Chang-Tien , F. Wang, G. Trajcevski, Y. Huang, S. Newsam, L. Xiong. - [s.l] : ACM, 2020. - ISBN 978145038019-5. - pp. 1-10 (( Intervento presentato al 28. convegno International Conference on Advances in Geographic Information Systems tenutosi a Seattle nel 2020 [10.1145/3397536.3422255].
info:eu-repo/semantics/bookPart
4
Prodotti della ricerca::03 - Contributo in volume
File in questo prodotto:
File Dimensione Formato  
ml-arxiv.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 5.12 MB
Formato Adobe PDF
5.12 MB Adobe PDF Visualizza/Apri
3397536.3422255.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 6.49 MB
Formato Adobe PDF
6.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/763771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact