This report is the outcome of an EFSA procurement (NP/EFSA/GMO/2018/01) reviewing relevant scientific information on in silico prediction methods for protein toxicity, that could support the food and feed risk assessment. Several proteins are associated with adverse (toxic) effects in humans and animals, by a variety of mechanisms. These are produced by plants, animals and bacteria to prevail in hostile environments. In the present report, we present an integrated pipeline to perform a comprehensive literature and database search applied to proteins with toxic effects. “Toxin activity” and “toxin-antitoxin system” strings were used as inputs for this pipeline. UniProtKB was considered as the reference database, and only the UniProtKB curator-reviewed proteins were considered in the pipeline. Experimentally- determined structures and homology-based in silico 3D models were retrieved from protein structures repositories; family-, domain-, motif- and other molecular signature-related information was also obtained from specific databases which are part of the InterPro consortium. Protein aggregation associated with adverse effects was also investigated using different search strategies. This work can serve as the basis for further exploring novel risk assessment strategies for new proteins using in silico predictive methods.

Literature search – Exploring in silico protein toxicity prediction methods to support the food and feed risk assessment / L. Palazzolo, E. Gianazza, I. Eberini. - In: EFSA SUPPORTING PUBLICATIONS. - ISSN 2397-8325. - 17:7(2020 Jul 31). [10.2903/sp.efsa.2020.EN-1875]

Literature search – Exploring in silico protein toxicity prediction methods to support the food and feed risk assessment

L. Palazzolo
Primo
;
E. Gianazza
Penultimo
;
I. Eberini
Ultimo
2020

Abstract

This report is the outcome of an EFSA procurement (NP/EFSA/GMO/2018/01) reviewing relevant scientific information on in silico prediction methods for protein toxicity, that could support the food and feed risk assessment. Several proteins are associated with adverse (toxic) effects in humans and animals, by a variety of mechanisms. These are produced by plants, animals and bacteria to prevail in hostile environments. In the present report, we present an integrated pipeline to perform a comprehensive literature and database search applied to proteins with toxic effects. “Toxin activity” and “toxin-antitoxin system” strings were used as inputs for this pipeline. UniProtKB was considered as the reference database, and only the UniProtKB curator-reviewed proteins were considered in the pipeline. Experimentally- determined structures and homology-based in silico 3D models were retrieved from protein structures repositories; family-, domain-, motif- and other molecular signature-related information was also obtained from specific databases which are part of the InterPro consortium. Protein aggregation associated with adverse effects was also investigated using different search strategies. This work can serve as the basis for further exploring novel risk assessment strategies for new proteins using in silico predictive methods.
protein toxicity, bioinformatics, toxic activity, toxin-antitoxin system, aggregates, predictive toxicity
Settore BIO/10 - Biochimica
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
31-lug-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
sp.efsa.2020.EN-1875.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/756720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact