We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.

Regularized vortex approximation for 2D Euler equations with transport noise / M. Coghi, M. Maurelli. - In: STOCHASTICS AND DYNAMICS. - ISSN 0219-4937. - (2020). [Epub ahead of print] [10.1142/S021949372040002X]

Regularized vortex approximation for 2D Euler equations with transport noise

M. Maurelli
Secondo
2020

Abstract

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the number of particles N to infinity and the regularization in the Biot-Savart kernel to 0, as a suitable function of N.
Interacting particle systems; Stochastic 2D Euler equations; Transport noise; Vortex approximation
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MAT/05 - Analisi Matematica
2020
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Coghi_Maurelli_vortex_stoch_Euler.pdf

Open Access dal 02/01/2021

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 370.41 kB
Formato Adobe PDF
370.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/746570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact