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Abstract

We study a mean field approximation for the 2D Euler vorticity equation driven by a transport
noise. We prove that the Euler equations can be approximated by interacting point vortices driven by a
regularized Biot-Savart kernel and the same common noise. The approximation happens by sending the
number of particles N to infinity and the regularization ε in the Biot-Savart kernel to 0, as a suitable
function of N .

1 Introduction

In this paper we consider the stochastic Euler equations on the two-dimensional torus T2, in vorticity form,
driven by transport noise, namely

∂tξ + u · ∇ξ +
∑
k

σk · ∇ξ ◦ Ẇ k = 0, u = K ? ξ, (1)

where ξ = ξ(t, x, ω) is the unknown vorticity, K is the Biot-Savart kernel, σk are given, divergence-free vector
fields, satisfying certain assumptions, W k are independent real Brownian motions and ◦ denotes Stratonovich
integration. We prove convergence, with quantitative bounds, of a system of point vortices, with regularized
kernel Kε, to the bounded solution ξ to (1).

The deterministic Euler equations describe the motion of an incompressible, non-viscous fluid; in two
dimensions one can use the equivalent vorticity formulation, that is (1), where u = u(t, x) represents the
velocity of the fluid at time t and space x and ξ(t, x) = curlu(t, x) is its vorticity. In 2D, well-posedness holds
among bounded solution, as proved in [33], see also [30, Section 2.3] for an alternative proof. Concerning the
stochastic Euler equations, there are various results depending on the type on noise; the transport noise in
the vorticity, which we consider here in (1), is motivated by the transport nature of the vorticity equation.
For equation (1) in 2D, existence and uniqueness of (probabilistically) strong, bounded solutions is proved in
[9], see also [12] and [25] for resp. a 3D analogue and a rough path analogue of (1). Transport noise has also
been used to show regularization by noise phenomena, mostly for the linear case ([16, 2] and several other
works), though isolated nonlinear examples also exist (see e.g. [13, 17, 22, 18] and the recent review [7]).

The vortex approximation is an approximation of the solution to the Euler equations in vorticity form via
the weighted empirical measure of a system of interacting diffusions. The idea is formally as follows: Take a
weighted empirical measure 1

N

∑N
i=1 ξ

i,NδXi,N0
which approximates the initial condition ξ0 and consider the

following system of interacting diffusions:

dXi,N
t =

1

N

∑
j 6=i

ξj,NK(Xi,N
t −Xj,N

t )dt+
∑
k

σk(Xi,N
t ) ◦ dW k

t , i = 1, . . . N. (2)

Then, formally and ignoring self interaction (that is, assuming formally K(0) = 0), the empirical measure
1
N

∑N
i=1 ξ

i,NδXi,Nt
is a solution to (1) in the distributional sense. Hence we might expect, by a continuity

argument with respect to the initial condition, that 1
N

∑N
i=1 ξ

i,NδXi,Nt
approximates the solution ξt. The
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system (2) describes the motion of interacting vortices and is similar to the system of interacting diffusions
approximating a McKean-Vlasov SDE, see e.g. [32], with one important difference: the vortices in (2) are
driven by the space correlated noise

∑
k σk(x) ◦ dW k

t , while in the McKean-Vlasov SDE approximation,
the particles are driven by independent Brownian motions. In the case of independent Brownian motions
as driving signals, the limit of the empirical measures is expected to solve the deterministic Navier-Stokes
equations (in vorticity form) rather than the stochastic Euler equations, as noted by Chorin [10]. The vortex
system can be also viewed as a discrete approximation of the Euler equations; other discrete models in
stochastic fluid dynamics are the shell models and the dyadic models (see e.g. [5, 6, 1, 8]).

When coming to a rigorous proof of the above convergence argument, two difficulties arise: 1) the interac-
tion kernel K is irregular, precisely we expect K(x) ≈ x⊥/|x|2 close to 0; 2) the noise term prevents us from
exploiting classical continuity arguments used in the deterministic context. In the deterministic context, for
regular interaction kernel, convergence of the particle system is proved in [14]. The case of 2D Euler equations
is considered in [28]: the authors consider a system of interacting vortices under a regularized kernel Kε and
prove the convergence of this system to the Euler equations, assuming the convergence of the initial positions
at rate ζN and tuning the regularization parameter ε = ε(N) as a suitable, double logarithmic function of
ζN [28, Theorem 4.1]; see also [30, Section 5.3]. The convergence of the original vortex system (2) (without
noise), with no regularization, is proved in [23] and also in [31], in the latter paper also for unbounded
solutions to (1) (without noise), via a suitable randomization of the initial conditions of the vortex system.
The paper [15] shows the approximation result for distributional solutions under the white noise invariant

measure µ on T2: precisely, if the initial conditions Xi,N
0 are taken independent and identically distributed

with uniform law and the intensities ξj,N are taken i.i.d. N (0, N), then the vortex system converges a.s. to
a random, stationary solution to the Euler equations with one-time marginals distributed as µ; the result
is generalized also to solutions whose one-time marginals are absolutely continuous with respect to µ. For
other convergence results in the deterministic case the reader can refer to [21, 19, 24].

In the stochastic case, [11] proves the convergence of the particle system (2) for a regular kernel K and
a non-negative initial distribution ξ0. To our knowledge, the only paper dealing with approximation of
stochastic Euler equations via vortices is [18], where the analogue result of [15] for the stochastic case is
proved (the authors prove also an improved, compared to the deterministic case, regularity of the density
with respect to µ). The paper [17] shows that, for any fixed N , the vortex system (2) is well-posed for every
initial condition, at least for suitably non-degenerate σk, while the corresponding deterministic system can
collapse for special (zero Lebesgue measure) initial conditions.

Note that, in the case of independent noises dW i, that is, the case of deterministic Navier-Stokes as ex-
pected limiting equation, better results of convergences (in terms of rates and larger class of initial conditions)
can be proved, see [20] and [26] as two remarkable examples. Note also that, in the 3D case, an analogue
approximation has been proposed, for the deterministic Euler equations, in [3, 4], replacing vortex points by
vortex filaments.

In this paper we show the vortex approximation for bounded solutions to the stochastic 2D Euler equation
(1), using a vortex system with regularized kernel Kε, namely

dXi,N
t =

1

N

∑
j 6=i

ξj,NKε(Xi,N
t −Xj,N

t )dt+
∑
k

σk(Xi,N
t ) ◦ dW k

t , i = 1, . . . N, (3)

for a regularization parameter ε = ε(N). Our main result is

Theorem (see Theorem 18). Assume that σk are sufficiently regular, and let ξ0 be a bounded initial vorticity.

Assume that 1
N

∑N
i=1 ξ

i,Nδxi converges to ξ0 with rate ζN , as N →∞. Let ε(N) ≈ (− log ζN )−δ for a suitable
δ ∈ R+ and let Xi,N be the solution to the regularized vortex system (3) with initial condition (x1, . . . , xN ).

Then the path of empirical measures ( 1
N ξ

i,N
∑N
i=1 δXit )t converges in W 1,∞(T2)∗, as N →∞, to the (unique)

bounded solution to the stochastic 2D Euler equations (1).

We use the strategy of [28] applied to the stochastic case. Note that, by a technical trick in the fixed
point argument in Section 3 (see Remark 12), we can deal with ε(N) as logarithmic function of ζN , rather
than double logarithmic as in [28], though we expect the result to be non-optimal, as for the deterministic
case. We leave the investigation of the convergence of the true vortex system (2) for future research.

The paper is organized as follows. In Section 3, we deal with the convergence of (3) to the regularized
version of the Euler equation (1) (replacing the Biot-Savart kernel K with Kε, for fixed ε). We use the
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techniques in [11], showing in addition the convergence in Lp in the ω variable for every p ≥ 1 and accounting
for non positive measures as well. Then, in Section 4, we deal with the convergence of the solution of
the regularized Euler equation as the regularization parameter ε tends to 0; we use the techniques in [9],
showing in addition convergence in Lp(Ω;C([0, T ];L1(T2))) for p ≥ 1 (in [9], convergence is shown only in
C([0, T ];L1(Ω × T2))). This is shown in Theorem 17. Finally, in Theorem 18 we prove that the empirical
measure of the system (3) converges to the solution of the Euler equation (1).
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2 Preliminaries

2.1 Spaces of measures

We start with some notations used throughout the paper. Given a compact metric space (E, d) (in practice,
E = T2 with the Euclidean distance), we call M(E) the space of finite, signed Borel measures on E. Given
a measurable function ϕ : E → R and a measure µ ∈M(E), we write

µ(ϕ) :=

∫
E

ϕ(x)µ(dx).

We call Cb(E) the space of continuous bounded functions on E, endowed with the supremum norm ‖ϕ‖∞ =
supx∈E |ϕ(x)|. The space M(E), being the dual of Cb(E), is naturally endowed with the dual norm

‖µ‖ := sup
‖ϕ‖∞≤1

|µ(ϕ)|.

Given a finite signed Borel measure µ, we denote by |µ| its variation measure (it holds ‖µ‖ = |µ|(X)).
The space of bounded Lipschitz continuous functions on E will be called BL(E), while the unit ball in

this space is
BL1(E) := {ϕ ∈ Lip(E) | ‖ϕ‖∞ + Lip(ϕ) ≤ 1 } ,

where Lip(ϕ) := supx,y∈E
|ϕ(x)−ϕ(y)|
|x−y| .

Now we endow M(E) with the Kantorovich-Rubinstein (or 1-Wasserstein) metric

W1(µ, ν) := sup
ϕ∈BL1(E)

|µ(ϕ)− ν(ϕ)| .

The space M(E) is not complete with respect to this metric. However, for every M > 0, the closed ball in
the total variation norm MM (E) := {µ ∈M | ‖µ‖ ≤M} is complete with respect to W1.

We call P(E) the space of probability measures on E.

Remark 1. The fact that MM (E) is closed under W 1 is classical, we give here a short proof. Let (µn)n∈N ∈
MM (E) be a sequence converging to µ in W 1. For every ϕ ∈ BL(E), we have limn→∞ µn(ϕ) − µ(ϕ) ≤
limn→∞ ‖ϕ‖BLW1(µn, µ) = 0. Hence, since the Lipschitz functions are dense in the continuous functions, we
have

sup
ϕ∈Cb(E),‖ϕ‖∞≤1

|µ(ϕ)| ≤ sup
ϕ∈BL(E),‖ϕ‖∞≤1

|µ(ϕ)| ≤ sup
ϕ∈BL(E),‖ϕ‖∞≤1

sup
n
|µn(ϕ)| ≤M.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, satisfying the standard assumption (that is, com-
pleteness and right-continuity). Fix a time horizon T > 0 and a real number p ∈ [1,∞), we define the space

V p,TM := Lp(Ω;C([0, T ],MM (T2))) of (Ft)t≥0-progressively measurable stochastic processes endowed with
the distance

dp(µ, ν) := E

[
sup
t∈[0,T ]

W1(µt, νt)
p

] 1
p

.
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Remark 2. The space V p,TM with the distance dp is complete, we give a short proof for completeness. Indeed,

given a Cauchy sequence (µn)n∈N ⊂ V p,TM there is a subsequence (µnk)k∈N which is almost surely a Cauchy
sequence in C([0, T ],MM (T2)). Since C([0, T ],MM (T2)) is complete, there exists a null set N ⊂ Ω, such
that, for all ω ∈ N c, there exists µ(ω) ∈ C([0, T ],MM (T2)) such that supt∈[0,T ]W1(µnk(ω), µ(ω)) → 0 as
k → ∞. Adaptedness of µ follows from adaptedness of µnk . Since the distance is bounded, dominated
convergence concludes the argument.

For later convenience, given a positive constant c > 0, we define the distance

dcp(µ, ν) = E

[
sup
t∈[0,T ]

(
e−ctW1(µt, νt)

p
)] 1

p

. (4)

Note that, for every p ∈ [1,∞) and c > 0, the two distances dp and dcp are equivalent. We will sometimes use
the short notation Lpx to mean Lp(T2).

Remark 3. The distance W 1 has the following property: for any µ in MM (E), for every two Borel maps
f, g : E → E, it holds

W1(f#µ, g#µ) ≤ ‖µ‖‖f − g‖∞.

Indeed, for every ϕ in BL1(E), we have

|f#µ(ϕ)− g#µ(ϕ)| = |µ(ϕ(f)− ϕ(g))| ≤ ‖µ‖‖f − g‖∞.

For the distance dcp a similar property holds: for any µ in MM (T2), for every two measurable maps f, g :
[0, T ]× T2 × Ω→ T2, it holds

dcp(f#µ, g#µ) ≤ ‖µ‖ sup
x∈T2

E

[
sup
t∈[0,T ]

(
e−ct|ft(x)− gt(x)|

)p] 1
p

.

Indeed, recalling that |µ(ψ)|p ≤ ‖µ‖p−1
∫
|ψ|pd|µ| for every ψ,

dcp(f#µ, g#µ)p = E

[
sup
t∈[0,T ]

sup
ϕ∈BL1(T2)

(
e−ct|µ(ϕ(ft)− ϕ(gt))|

)p]

≤ ‖µ‖p−1

∫
T2

E

[
sup
t∈[0,T ]

sup
ϕ∈BL1(T2)

(
e−ct|ϕ(ft)− ϕ(gt)|

)p]
d|µ|(dx)

≤ ‖µ‖p−1

∫
T2

E

[
sup
t∈[0,T ]

(
e−ct|ft − gt|

)p]
d|µ|(dx)

≤ ‖µ‖p sup
x∈T2

E

[
sup
t∈[0,T ]

(
e−ct|ft(x)− gt(x)|

)p]
.

2.2 The noise

Here we give the assumptions on the noise. In the following, σk : T2 → R2 is a vector field, for every k ∈ N
and Q : T2 × T2 → R2×2 is the space covariance (matrix-valued) function defined by

Qij (x, y) :=

∞∑
k=1

σik (x)σjk (y) .

Assumptions 4. i) σk : T2 → R2 are C2 functions satisfying
∑∞
k=1 ‖σk‖C2 <∞.

ii) σk are divergence free vector fields, i.e. div σk = 0, ∀k ≥ 1.

iii) The covariance function : T2 → R2×2 satisfies
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(a) Q(x, y) = Q(x− y) (space homogeneity of the random field
∑∞
k=1 σk (x)Bkt );

(b) Q (0) = aI for some a ≥ 0 (where I is the 2× 2 identity matrix).

One can find examples of this model (or its analougue in the full space) in several references, e.g. [13],
[27] and [11].

Example 5. We present here a family of σk which satisfies Assumptions 4.
For every k = (k1, k2) ∈ Z2 \ {0} we define

σk(x) = (cos(k · x) + sin(k · x))
k⊥

|k|β
.

Now we verify the Assumptions 4 for β > 4.
We have ‖σk‖Ch ≤ C|k|−β+1+h, hence assumption i) is satisfied for β > 4. The Jacobian matrix is

Dσk(x) =
1

|k|β
(cos(k · x)− sin(k · x))

(
−k1k2 −k2

2

k2
1 k1k2

)
.

The trace of this matrix is equal to 0 and so assumption ii) is also satisfied.
The covariance matrix Q is equal to

Q(x, y) =
∑

k∈Z2\{0}

1

|k|2β
[

cos(k · (x− y)) + sin(k · (x+ y))
]( k2

2 −k2k1

−k2k1 k2
1

)
.

Now we group together the terms with k and −k: sin(k · (x + y)) disappears and we get (calling Z2
+ =

Z+ × Z ∪ {0} × Z+)

Q(x, y) = 2
∑
k∈Z2

+

1

|k|2β
cos(k · (x− y))

(
k2

2 −k2k1

−k2k1 k2
1

)
.

Thus Q depends only on the difference x − y and assumption iii) − a) is satisfied. To verify assumption
iii) − b) we look at Q(0): here the terms with k and k⊥ sum up to a diagonal matrix, precisely (calling
Z2

++ = {k ∈ Z | k1 ≥ 0, k2 > 0})

Q(0) = 2
∑
k∈Z2

+

1

|k|2β

(
k2

2 −k2k1

−k2k1 k2
1

)
= 2

∑
k∈Z2

++

1

|k|2β

(
1 0
0 1

)
.

This shows that Q(0) = aI for some a, that is assumption iii)− b).

2.3 The Biot-Savart kernel

We recall here the needed properties of the 2-dimensional Biot-Savart kernel. The following results are
standard for the Green function and can be found, among others, in [29] and [9].

For an r > 0, we define

γ(r) =

{
r(1− log(r)) if 0 < r < 1/e
r + 1/e if r ≥ 1/e.

(5)

For this function γ and the Biot-Savart kernel K, the following properties hold:

(i) for every 0 < ε < 1
e ,

γ(r) ≤ − log(ε)r + ε.

(ii) K is a divergence free vector field and∫
T2

|K(x− y)−K(x′ − y)|dy . γ(|x− x′|), ∀x, x′ ∈ T2.

(iii) for every ξ ∈ L∞,

|(K ∗ ξt)(x)− (K ∗ ξt)(x′)| . ‖ξt‖L∞γ(|x− x′|), ∀x, x′ ∈ T2.
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3 Vortex approximation for regularized Euler equations

In this section, we work with a regularized kernel and we show the convergence of the particle system to
the regularized Euler equation (Corollary 16). The idea is the following. First, we show the existence and
uniqueness for the regularized Euler equation by expressing any solution as fixed point of a certain operator
Ψ on the space V 1,T

M and proving the contraction property for this operator. Then we note that both the

weighted empirical measure SN,εt and the desired limit ξεt are solutions to the regularized Euler equation,
with different initial data and, with the previous representation in mind, we prove the convergence theorem
as a continuity theorem with respect to the initial data.

For ε > 0 we take the mollifier ρε(x) = ε−2ρ(ε−1x), for x ∈ R2, where ρ ∈ C∞0 (R2), ρ ≥ 0, ρ(−x) = ρ(x)
and ‖ρ‖L1 = 1. We define

Kε(x) :=

∫
R2

K(x− y)ρε(y)dy, x ∈ T2.

This function has the following properties.

Lemma 6. Let ε > 0, the following holds:

(i) ‖Kε −K‖L1(T2) → 0, as ε→ 0.

(ii) Kε ∈ C∞b (T2;R2).

(iii) For any δ > 0 and k ∈ N there exists C = C(ρ, k, δ) > 0 such that

‖DKε‖Ck ≤ C‖K‖L2/(1+δ)ε−(k+1+δ).

Proof. (i) and (ii) are standard properties of the mollification, we only show (iii). Using Hölder inequality,
with q = 2/(1− δ), and the change of variables y′ = ε−1y, we get

|DkKε(x)| ≤‖K‖L2/(1+δ)‖Dkρε‖Lq = ‖K‖L2/(1+δ)

(∫
R2

|ε−2ε−kDkρ(ε−1y)|qdy
) 1
q

≤‖K‖L2/(1+δ)ε(−(2+k)q+2)/q

(∫
R2

|Dk(y)|qρdy
) 1
q

.

This concludes the proof.

Having the regularized kernel, for every µ ∈M(T2) we define (omitting the ε dependence in the notation)

b(x, µ) :=

∫
T2

Kε(x− y)µ(dy), x ∈ T2.

Remark 7. The function b is locally uniformly Lipschitz continuous in both arguments, precisely:

• For every x, x′ ∈ T2 and µ ∈M(T2), |b(x, µ)− b(x′, µ)| ≤ Lip(Kε)‖µ‖|x− x′|.

• For everyx ∈ T2 and µ, µ′ ∈M(T2), |b(x, µ)− b(x, µ′)| ≤ Lip(Kε)W1(µ, µ′).

We introduce the regularized Euler equation in vorticity form, which takes the form

∂tµ+ div(b(µ)µ) +
∑
k=1

div(σkµ) ◦ dW k
t = 0. (6)

For the rigorous definition, we consider the Itô formulation of the above equation. Note that, for the assump-
tions on the noise (see e.g. [11, Section 2.2]), the Itô formulation reads formally:

∂tµ+ div(b(µ)µ) +
∑
k=1

div(σkµ)dW k
t =

1

2
∆µ.

We study distributional solutions of this equation in the following sense.
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Definition 8. Let µ0 ∈MM (T2). We say that µ ∈ V p,TM is a solution to equation (6) if, for every ϕ ∈ C2(T2),

µs(ϕ) = µ0(ϕ) +

∫ t

0

[
µs(b(µs)∇ϕ) +

1

2
µs(∆ϕ)

]
ds+

∑
k≥1

∫ t

0

µs(σk∇ϕ)dW k
s , P− a.s. ∀t ∈ [0, T ] (7)

(the P-exceptional set being independent of t).

Remark 9. The stochastic integral in (7) is well-defined, because P−a.s.∑
k≥1

µt(σk∇ϕ)2 ≤M‖ϕ‖2C2 sup
x∈T2

∑
k≥1

|σk(x)| <∞, ∀t ∈ [0, T ].

To handle the nonlinearity in equation (6), we fix a positive constant M > 0 and define the following

auxiliary stochastic differential equation, where the random measure µ ∈ V p,TM is fixed:{
dXt = b(Xt, µt)dt+

∑
k≥1 σk(Xt)dW

k
t ,

X0 = x ∈ T2.
(8)

Remark 10. Since the coefficients are Lipschitz continuous and bounded, equation (8) admits a unique strong
solution for t ∈ [0, T ]. Moreover, there exists a version of the solution map Φ(t, x, ω) which is Lipschitz
continuous in the initial datum x, uniformly in t, and Hölder continuous in t, uniformly in x (see [27,
Theorem 4.6.5]).

We call Φµ(t, x) the flow associated with equation (8), to stress the dependence on µ of the drift. For
every measure µ0 ∈M(T2), with ‖µ0‖ ≤M , we define the operator

Ψµ0 : V p,TM → V p,TM

µ 7→ Φµ#µ0.

Note that the map t 7→ (Φµt )#µ0 is a.s. continuous, indeed, by Remarks 3 and 10, for every s < t,

W1((Φµt )#µ0, (Φ
µ
s )#µ0) ≤M‖Φµt − Φµs ‖∞ ≤ CωM |t− s|α.

Moreover the total variation norm satisfies ‖Ψµ0‖ ≤ ‖µ0‖, P-a.s., for every t ∈ [0, T ]. Hence the operator
Ψµ0 is well-defined.

Now we show that the operator is a contraction in the norm dcp, for a suitable c.

Lemma 11. Let T > 0 and p > 2 be fixed. Assume ‖µ0‖ ≤M . There exists a constant c > 0, depending on
ε (and on a, T, p,M) such that

dcp(Φ
µ
#µ0,Φ

µ′

#µ0) ≤ 1

2
dcp(µ, µ

′),

for every µ, µ′ in V p,TM . Moreover,

c = c(σ, p,M, ε) ∼ ‖DKε‖p
2/(2(p−2))
C0 , as ε→ 0. (9)

Remark 12. Here we see the main reason to introduce the distance dcp in (4) with the e−ct factor: by a

suitable choice of c, the map Ψµ0 is a contraction on V p,TM with the distance dcp, without any need to take
T small. Beside being technically convenient, this choice allows also to avoid the double exponential rate in
[28, Theorem 4.1].

Proof of Lemma 11. We estimate the difference of the two images in terms of the differences of the two flows,
namely

dcp(Φ
µ
#µ0,Φ

µ′

#µ0)p ≤‖µ0‖p sup
x∈T2

E

[
sup
t∈[0,T ]

e−pct|Φµt (x)− Φµ
′

t (x)|p
]
. (10)
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For two µ, µ′ ∈ V p,TM and x ∈ T2, we apply Itô formula to fη(x) = (|x|2 + η)
q
2 . Here q = p

2 and we choose
η = 0 if q ≥ 2, η > 0 if 1 < q < 2. For this choice of η and q, it holds

|∇fη(x)| ≤ q|x|q−1 |D2fη(x)| ≤ q(q − 1)|x|q−2. (11)

Notice that we endow the space of matrices with Hilbert-Schmidt norm.
Let c̄ = pc

2 . Using Itô Formula and Assumption 4 we obtain that for each x ∈ T2, it holds P-a.s.: for
every t,

e−c̄tfη(Φµt (x)− Φµ
′

t (x)) ≤(C(q, σ)2 − c̄)
∫ t

0

e−c̄s|Φµs (x)− Φµ
′

s (x)|qds

+ q

∫ t

0

e−c̄s|Φµs (x)− Φµ
′

s (x)|q−1|bs(Φµs (x), µ)− bs(Φµ
′

s (x), µ′)|ds (12)

+

∣∣∣∣∣∣
∑
k≥1

∫ t

0

e−c̄s∇fη(Φµs (x)− Φµ
′

s (x))(σk(Φµs (x))− σk(Φµ
′

s (x)))dW k
s

∣∣∣∣∣∣ , (13)

where C(q, σ) is a positive constant (depending on q and (σk)k and possibly changing from one line to
another).

To estimate term (12), we use a triangular inequality and the Lipschitz property of b(x, µ), both in x and
µ (remember ‖µt‖ ≤M). Hence, term (12) is bounded by the following

qLipq(Kε)

[
M

∫ t

0

e−c̄s|Φµs (x)− Φµ
′

s (x)|qds+

∫ t

0

e−c̄s|Φµs (x)− Φµ
′

s (x)|q−1W1(µs, µ
′
s)ds

]
.

We apply Young inequality with q
q−1 and q to the second term to obtain, for every s ∈ [0, T ] and δ > 0 (to

be determined later),

|Φµt (x)− Φµ
′

t (x)|q−1W1(µs, µ
′
s) ≤ δ−1/(q−1)|Φµt (x)− Φµ

′

t (x)|q +
δ

q
W1(µs, µ

′
s)
q.

Substituting into (12) we obtain

e−c̄tfη(Φµt (x)− Φµ
′

t (x)) ≤L
∫ t

0

e−c̄s|Φµs (x)− Φµ
′

s (x)|qds+ δLipq(Kε)

∫ t

0

e−c̄sW1(µs, µ
′
s)
qds+ (13), (14)

where L = C(q, σ) + qLipq(Kε)(M + δ−1/(q−1))− c̄. We can choose c̄ as a function of δ, M , Lip(Kε) and q
such that

L = C(q, σ) + qLipq(Kε)(M + δ−1/(q−1))− c̄ = 0,

so that we can remove the corresponding term from the estimates. We estimate now the expectation of the
square of (13). First we use the Burkholder-Davis-Gundy inequality, then the Lipschitz assumption on σ and
(11) to obtain

E sup
s∈[0,t]

∣∣∣∣∣∣
∑
k≥1

∫ s

0

e−c̄r∇fη(Φµr (x)− Φµ
′

r (x))(σk(Φµr (x))− σk(Φµ
′

r (x)))dW k
r

∣∣∣∣∣∣
2

≤ CE
∑
k≥1

∫ t

0

e−2c̄r|∇fη(Φµr (x)− Φµ
′

r (x))|2|σk(Φµr (x))− σk(Φµ
′

r (x))|2dr

≤ C(q, σ)E
∫ t

0

sup
r∈[0,s]

e−2c̄r|Φµr (x)− Φµ
′

r (x)|2qds. (15)

Now we estimate the expectation of the square of (14): using (15) and Jensen inequality we have (remember
that fη(x) ≥ |x|q and L = 0)

E sup
s∈[0,t]

e−2c̄s|Φµs (x)− Φµ
′

s (x)|2q ≤ Tδ2Lip2q(Kε)

∫ t

0

e−2c̄sW1(µs, µ
′
s)

2qds

+ C(q, σ)E
∫ t

0

sup
r∈[0,s]

e−2c̄r|Φµr (x)− Φµ
′

r (x)|2qds.
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Applying Gronwall’s Lemma, we obtain (remember that 2q = p and 2c̄ = pc)

E sup
s∈[0,t]

e−pcs|Φµs (x)− Φµ
′

s (x)|p ≤ Tδ2Lipp(Kε)eC(q,σ)T

∫ t

0

E

[
sup
r∈[0,s]

e−pcrW1(µr, µ
′
r)
p

]
ds.

We can choose now δ = e−
1
2C(q,σ)T (2pMpT Lipp(Kε))−

1
2 . With this choice, we get

c = c(σ, p,M, ε) ∼ ‖DKε‖p/2C0 ‖DKε‖p/2·2/(p−2)
C0 = ‖DKε‖p

2/(2(p−2))
C0 , as ε→ 0.

With the constants chosen in this way we obtain

E

[
sup
t∈[0,T ]

e−pct|Φµt (x)− Φµ
′

t (x)|p
]
≤ 1

2pMp
E

[
sup
t∈[0,T ]

e−ctW1(µt, µ
′
t)
p

]
. (16)

Estimates (16) and (10) allow to conclude the proof of the lemma.

Theorem 13. Let T,M > 0 and p > 2. Let µ0 ∈MM (E) Then (6) has a solution in the space V p,TM starting
from µ0. Precisely, the unique fixed point for the operator Ψµ0 is a solution to (6).

Proof. From Lemma 11 follows that there exists c > 0 such that the operator Ψµ0 is a contraction (V p,TM , dcp).
Hence it has a unique fixed point. As a straight forward application of Itô formula one can show that every
fixed point satisfies (7). The proof is complete.

Now we investigate the continuity of the fixed point of Ψµ0 with respect to the initial condition µ0. We
need a preliminary estimate on the derivative of the flow Φ associated to (8).

Lemma 14. Let Φt be the stochastic flow of equation (8), we denote by DΦt(x) its derivative in space. For
every every p > 3, we have

E

[
sup
t∈[0,T ]

sup
x∈T2

|DΦt(x)|p
]
≤ Λ(p),

where Λ(p) = C
(
1 +Mp‖DKε‖pC1

)
exp

(
C(1 +M2p‖DKε‖2pC0)

)
and C = C(p, T, ‖σ‖C2).

Proof. Let ηt(x) = DΦt(x) be the space derivative of the flow. By formal computation η satisfies the following
stochastic differential equation, for every x ∈ T2,

ηt(x) = I +

∫ t

0

Db(Φu(x))ηu(x)du+

∫ t

0

∑
k

Dσk(Φu(x))ηu(x)dW k
u , ∀t ∈ [0, T ], P− a.s.

where I is the 2× 2 identity matrix.
We estimate the Lγ(Ω) norm of η, for fixed γ > 2 and fixed x ∈ T2, t ∈ [0, T ]. By a standard computation,

which we do not repeat here, we obtain, for every t ∈ [0, T ],

E [|ηt(x)|γ ] ≤ cγ exp
(
C(1 +Mγ‖DKε‖γC0)

)
, (17)

where cγ , C are positive constants depending respectively on γ and on γ, T, ‖Dσ‖C0 . In view of Kolmogorov
criterion, we would like to control, for fixed x, y ∈ T2, t > s ∈ [0, T ] and γ ≥ 2,

E |ηt(x)− ηs(y)|γ ≤ E |ηs(x)− ηs(y)|γ + E |ηt(x)− ηs(x)|γ . (18)

For the first addend in the right hand side of (18), we have

E |ηs(x)− ηs(y)|γ ≤cγE
∣∣∣∣∫ s

0

(Db(Φu(x))ηu(x)−Db(Φu(y))ηu(y)) du

∣∣∣∣γ (19)

+ cγE

∣∣∣∣∣
∫ s

0

∑
k

(Dσk(Φu(x))ηu(x)−Dσk(Φs(y))ηu(y)) dW k
u

∣∣∣∣∣
γ

. (20)
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We first estimate term (19). Using Cauchy-Schwarz inequality, we obtain for any 0 < α < 1,

cγE
∣∣∣∣∫ s

0

(Db(Φu(x))ηu(x)−Db(Φu(y))ηu(y)) du

∣∣∣∣γ
≤ cγT γ−1E

[∫ s

0

(|Db(Φu(x))−Db(Φu(y))|γ |ηu(x)|γ + |Db(Φu(y))|γ |ηu(x)− ηu(y)|γ) du

]
≤ cγT γ−1‖DKε‖γCαM

γ

(∫ s

0

E |Φu(x)− Φu(y)|2αγ du

) 1
2
(∫ s

0

E |ηu(x)|2γ du

) 1
2

(21)

+ cγT
γ−1‖DKε‖γC0M

γ

∫ s

0

E |ηu(x)− ηu(y)|γ du.

In a similar way, we can apply the Burkholder-Davis-Gundy inequality to (20), then apply the same reasoning
as before to obtain

cγE

∣∣∣∣∣
∫ s

0

∑
k

(Dσk(Φu(x))ηu(x)−Dσk(Φs(y))ηu(y)) dW k
u

∣∣∣∣∣
γ

≤ cγT
γ
2−1‖Dσ‖γC0

∫ s

0

E |ηu(x)− ηu(y)|γ du

+ cγT
γ
2−1‖Dσ‖γCα

(∫ s

0

E |Φu(x)− Φu(y)|2αγ du

) 1
2
(∫ s

0

E |ηu(x)|2γ du

) 1
2

. (22)

In a standard way we estimate the difference (using a2αγ ≤ 1 + a(2αγ)∨1:

E |Φu(x)− Φu(y)|2αγ ≤
∫ 1

0

(1 + E |ηu(ξx+ (1− ξ)y)|(2αγ)∨1
)dξ|x− y|2αγ

≤
(

1 + sup
z

E |ηu(z)|(2αγ)∨1

)
|x− y|2αγ . (23)

We put together now estimates (21), (22), (23) and (17) to get (using aγ ≤ 1 + a2γ and a(2αγ)∨1 ≤ 1 + a2γ

for every a ≥ 0, 0 < α ≤ 1)

E |ηs(x)− ηs(x)|γ ≤C(1 +Mγ‖DKε‖γCα) exp
(
C(1 +M2γ‖DKε‖2γC0)

)
|x− y|αγ

+ C(1 +Mγ‖DKε‖γC0)

∫ s

0

E|ηu(x)− ηu(y)|γdu. (24)

Here and in the rest of the proof C = C(γ, T, ‖Dσ‖Cα , ‖Dσ‖C0) . By Gronwall’s Lemma we obtain

E [|ηs(x)− ηs(y)|γ ] ≤ C(1 +Mγ‖DKε‖γCα) exp
(
C(1 +M2γ‖DKε‖2γC0)

)
|x− y|αγ . (25)

For the second term in (18), we have

E |ηt(x)− ηs(x)|γ ≤cγE
∣∣∣∣∫ t

s

Db(Φu(x))ηu(x)du

∣∣∣∣γ + cγE

∣∣∣∣∣
∫ t

s

∑
k

Dσk(Φu(x))ηu(x)dW k
u

∣∣∣∣∣
γ

. (26)

The two terms in (26) can be estimated using the boundedness of the coefficients, Burkholder-Davis-Gundy
inequality for the second one, Hölder inequality and (17) to obtain

E |ηt(x)− ηs(x)|γ ≤ C
(
1 +Mγ‖DKε‖γC0

)
|t− s|

γ
2 sup
u∈[0,T ]

E|ηu(x)|γ

≤ C
(
1 +Mγ‖DKε‖γC0

)
exp

(
C(1 +Mγ‖DKε‖γC0)

)
|t− s|

γ
2 . (27)

Finally, we use (25) and (27) and the inequality ‖DKε‖Cα ≤ ‖DKε‖C1 to obtain

E [|ηt(x)− ηs(y)|γ ] ≤ Λ(γ)
(
|x− y|αγ + |t− s|

γ
2

)
, (28)
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where Λ(γ) = C
(
1 +Mγ‖DKε‖γC1

)
exp

(
C(1 +M2γ‖DKε‖2γC0)

)
. In order to conclude, we recall the follow-

ing inequality, a consequence of the Sobolev Embedding Theorem, valid for α′ > 0, β := α′ − 3/p > 0:

E

[
sup

t,s∈[0,T ]

sup
x,y∈T2

|DΦt(x)−DΦs(y)|p

(|t− s|2 + |x− y|2)
βp
2

]
≤
∫∫

[0,T ]×T2

E|DΦt(x)−DΦs(y)|p

(|t− s|2 + |x− y|2)
3
2 +α′p

2

dtdsdxdy.

Now we use (28) with γ = p to obtain

E

[
sup

t,s∈[0,T ]

sup
x,y∈T2

|DΦt(x)−DΦs(y)|p

(|t− s|2 + |x− y|2)
βp
2

]
≤ Λ(p)

∫∫
[0,T ]×T2

|t− s|
p
2 + |x− y|αp

(|t− s|2 + |x− y|2)
3
2 +α′p

2

dtdsdxdy. (29)

The condition p > 3 guarantees that we can find α and α′ in (0, 1) with α′ − 3/p > 0 and αp−α′p− 3 > −3
so that the integral in the right hand side of (29) is finite. The proof is complete.

Lemma 15. Let T > 0 and p > 2, let c be given as in Lemma 11. Given µ0, ν0 ∈ MM (T2) there exists a

positive constant Γ = Γ(p, T, σ,M, ε) := Λ(p)
1
p ∨ Λ(4)

1
4 , such that

dcp(µ, ν) ≤ 2ΓW1(µ0, ν0),

where µ, ν ∈ V are the fixed points of operators Ψµ0 ,Ψν0 respectively.

Proof. We use a triangular inequality to get

dcp(µ, ν) = dcp(Φ
µ
#µ0,Φ

ν
#ν0) ≤ dcp(Φ

µ
#µ0,Φ

µ
#ν0) + dcp(Φ

µ
#ν0,Φ

ν
#ν0). (30)

It follows from Lemma 11 that the second term in the right hand side is less than or equal to 1
2d
c
p(µ, ν). We

look at the first term, which is, by definition,

dcp(Φ
µ
#µ0,Φ

µ
#ν0)p = E sup

t∈[0,T ]

e−ct

∣∣∣∣∣ sup
ϕ∈Lip1(T2)

(∫
ϕ ◦ Φµ(x) (dµ0 − dν0)(x)

)∣∣∣∣∣
p

.

It follows from Remark 10 that the flow Φµ is a Lipschitz function on T2. Hence, for any Lipschitz function
ϕ, also the function ϕ ◦ Φµ is Lipschitz. Hence we have

dp(Φ
µ
#µ0,Φ

µ
#ν0) ≤ E[ sup

t∈[0,T ]

e−ct|Lip(Φµ)|p]
1
pW1(µ0, ν0).

We recall that
e−ct|Lip(Φµt )| ≤ sup

x∈T2

|DΦµt (x)|,

where we used that e−ct < 1. To estimate this last term we use Lemma 14: for any p > 3 we have

E

[
sup
t∈[0,T ]

sup
x∈T2

|DΦt(x)|p
]
≤ Λ(p).

If 2 < p ≤ 3, we have

E

[
sup
t∈[0,T ]

sup
x∈T2

|DΦt(x)|p
]
≤ Λ(4)

p
4 .

Using this, we find that

dcp(Φ
µ
#µ0,Φ

µ
#ν0) ≤ E

[
sup
t∈[0,T ]

e−ctLip(Φµ)p

] 1
p

W1(µ0, ν0) ≤ ΓW1(µ0, ν0).

Putting together the estimates on the two terms of (30) we conclude the proof.
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Lemma 15 states the continuity of the fixed point of Ψµ0 with respect to the initial condition µ0. We use
this to study the mean-field convergence of the particle system (3). We recall that the particle system reads,
for N ∈ N and 1 ≤ i ≤ N ,

dXi,N
t =

1

N

N∑
j=1

ξj,NKε(Xi,N
t −Xj,N

t )dt+

∞∑
k=1

σk(Xi,N
t ) ◦ dW k

t , Xi,N
t |t=0 = xi,N . (31)

Here (xi,N )1≤i≤N ⊆ T2 and (ξi,N )1≤i≤N ⊆ R are given.

Corollary 16. Let T,M > 0 and p > 2. Let µ be a solution to equation (6) and SN,εt = 1
N

∑N
i=1 ξ

i,NδXi,Nt
the empirical measure associated to the system of particles (31) with ‖µ0‖ ∨ ‖SN,ε0 ‖ ≤M . Then,

dp(S
N , µ) ≤ ecT dcp(SN , µ) ≤ 2ΓecTW1(SN0 , µ0),

where c is given in (9) and Γ is defined in Lemma 15.

Proof. We show now that for every N ∈ N the empirical measure Sε,N associated to the system of interacting

particles (31) driven by Kε is indeed a fixed point for the operator ΨSN0 . We must prove

Sε,Nt = (ΦS
ε,N

t )]S
N
0 , t ∈ [0, T ].

We evaluate the right hand side in a test function ϕ ∈ C(T2;R2),

(Φ
Sε,Nt
] SN0 )(ϕ) =

N∑
i=1

ϕ(ΦS
ε,N
t (xi,N )). (32)

Since, by definition, ΦS
ε,N
T is the flow associated with the equation (8) with drift depending on the empirical

measure, it is immediate to see that ΦS
ε,N
t (xi,N ) = Xi,N

t . Thus, the right hand side of (32) is exactly Sε,Nt (ϕ).

Now, since both µ and the empirical measure Sε,N are solutions in V p,TM to the limit equation (6), given
as a fixed point of the map Ψ, we conclude using Lemma 15.

4 Convergence of regularized Euler equations

In this section we show the convergence of the regularized Euler equation to the (true) Euler equation.
For a given initial condition ξ0 ∈ L∞( T2), we consider the flow associated with the approximated kernel

Kε, namely

dΦε(x) =

∫
T2

Kε(Φε(x)− Φε(y))ξ0(y) dydt+
∞∑
k=1

σk(Φε(x))dW k.

The existence and uniqueness of Φε follows from the previous section. We also consider the flow Φ associated
with the true Euler equation, namely

dΦ(x) =

∫
T2

K(Φ(x)− Φ(y))ξ0(y) dydt+

∞∑
k=1

σk(Φ(x))dW k.

In [9] the authors show existence and uniqueness for Φ and proves that the measure ξt := (Φt)]ξ0 is a
solution to the stochastic Euler vorticity equation (1). The following result shows the convergence of Φε to
Φ. The result is adapted from [9]; the main improvement here is to bring the supremum over time inside the
expectation and take the Lp norm in ω.

Theorem 17. For every p ≥ 1 finite, the family (Φε)ε converges to Φ in Lpω(Ct(L
1
x)) (as ε→ 0). Moreover

it holds, for some positive constants C (depending on p, T , ‖ξ0‖L∞x and
∑
k ‖σk‖2W 1,∞

x
) and c (depending on

p and T )

E

(
sup
t∈[0,T ]

∫
T2

|Φεt(x)− Φt(x)|dx

)p
≤ C‖Kε −K‖p exp(−c‖ξ0‖L∞x t)

L1
x

.
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Proof. In the proof, unless otherwise stated, C,C ′, c, . . . denote constants that can depend on p and T . Call
Zεt (x) = Φεt(x)−Φt(x). We expect, from the deterministic theory (see e.g. [29]) and the stochastic counterpart
(see [9]), that E sups∈[0,t] ‖Zεs‖

p
L1
x

satisfies a differential inequality involving a log-Lipschitz drift, and therefore

we expect to get an estimate of the form E sups∈[0,t] ‖Zεs‖
p
L1
x
≤ ‖Kε −K‖pe

−λt
. The problem, with respect

to [9], comes from the supremum over time inside the expectation, which does not allow easily a comparison
principle. For this reason, we choose not to control directly the Lpω(Ct(L

1
x)) norm of Z, but rather

E sup
s∈[0,t]

‖Zεs‖
p(t)
L1
x
,

where p(t) = peλt for some λ ≥ 0 to be determined later and for p ≥ 2. A bound on this quantity will imply
the final estimate.

As first step we compute the SDE for ‖Zεt ‖L1
x
. We would like to apply Itô formula to f(z) = |z|, since this

function is not C2 we use the approximate function fδ(z) = (|z|2 + δ)1/2, δ > 0; we recall that |∇fδ(z)| ≤ 1
and |D2fδ(z)| ≤ |z|−1. Applying Itô formula to fδ(Z

ε) we get

dfδ(Z
ε) =∇fδ(Zε)(uε(Φε)− u(Φ))dt+

∑
k

∇fδ(Zε)(σk(Φε)− σk(Φ))dW k

+
1

2

∑
k

(σk(Φε)− σk(Φ)) ·D2fδ(Z
ε)(σk(Φε)− σk(Φ))dt.

In the following, we use the notation Ht =
∫

T2 |Zεt |dx and H(δ)t =
∫

T2 fδ(Z
ε
t ) dx. In order to estimate

H(δ), we integrate in space and exchange integrals in space and in time using Fubini theorem and stochastic
Fubini theorem: it holds

dH(δ) =

∫
T2

∇fδ(Zε)(uε(Φε)− u(Φ)) dxdt+
∑
k

∫
T2

∇fδ(Zε)(σk(Φε)− σk(Φ)) dxdW k

+
1

2

∑
k

∫
T2

(σk(Φε)− σk(Φ)) ·D2fδ(Z
ε)(σk(Φε)− σk(Φ)) dx dt.

To control ‖Zεs‖
p(t)
L1
x

, we apply again Itô formula to H(δ)p(t)/2 = exp[p(t) logH(δ)/2] (the p(t)/2-power can

be regarded as regular since H(δ) ≥ δ1/2|T2| > 0): we get

H(δ)
p(t)/2
t −H(δ)

p/2
0 =

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∇fδ(Zε)(uε(Φε)− u(Φ)) dx dr

+
∑
k

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∇fδ(Zε)(σk(Φε)− σk(Φ)) dxdW k

+
1

2

∑
k

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

(σk(Φε)− σk(Φ)) ·D2fδ(Z
ε)(σk(Φε)− σk(Φ)) dx dr

+
1

2

∑
k

∫ t

0

p(r)(p(r)− 2)

4
H(δ)p(r)/2−2

(∫
T2

∇fδ(Zε)(σk(Φε)− σk(Φ)) dx

)2

dr

+

∫ t

0

p′(r)

2
log(H(δ))H(δ)p(r)/2 dr

=: Au +Astoch +Asecond−order−1 +Asecond−order−2 +Alog.

We aim at controlling the (square of) the L2
ω(Ct) norm in the equation above, but before doing this, we

want to get rid of the log-Lipschitz dependency coming from uε(Φε) − u(Φ), which would otherwise cause
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problems: for this we will use the term Alog, which comes from p′. We start splitting Au as follows:

Au ≤
∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

|uε(Φε)− u(Φ)|dxdr

≤
∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∫
T2

|Kε(Φε(x)− Φε(y))−K(Φ(x)− Φ(y))||ξ0(x)|dxdy dr

≤ ‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∫
T2

|Kε(Φε(x)− Φε(y))−K(Φε(x)− Φε(y))|dx dy dr

+ ‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∫
T2

|K(Φε(x)− Φε(y))−K(Φ(x)− Φε(y))|dxdy dr

+ ‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∫
T2

|K(Φ(x)− Φε(y))−K(Φ(x)− Φ(y))|dx dy dr

=: Au1 +Au2 +Au3.

Leaving the term Au1 for later, we estimate Au2 and Au3. For the term Au2, we make the change of variable
y′ = Φε(y) and we use the measure preserving property of Φε, the log-Lipschitz property associated with K
and Jensen inequality for the concave function γ defined in (5). We get:

Au2 =‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

∫
T2

|K(Φε(x)− Φε(y))−K(Φ(x)− Φε(y))|dx dy dr

≤C ′‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1

∫
T2

γ(|Zε(x)|) dx dr

≤C ′‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1γ(H(δ)) dr.

For the term Au3 we proceed similarly with the change of variable x′ = Φ(x), getting

Au3 ≤ C ′‖ξ0‖L∞x

∫ t

0

p(r)

2
H(δ)p(r)/2−1γ(H(δ)) dr.

Hence we can bound Au2 +Au3 +Alog with

Au2 +Au3 +Alog ≤
1

2

∫ t

0

2C ′‖ξ0‖L∞x p(r)H(δ)p(r)/2−1γ(H(δ)) + p′(r) log(H(δ))H(δ)p(r)/2] dr.

Now we choose λ = 2C ′‖ξ0‖L∞x , which gives (recall the definition of γ in (5))

p′(r) log(H(δ))H(δ) + 2C ′‖ξ0‖L∞x p(r)γ(H(δ)) = p(r)(log(H(δ))H(δ) + γ(H(δ))).

We use the following inequality for γ, valid for r in a bounded interval [0, R]:

γ(r) + r log r ≤ Cr,

for some C depending only on R. Hence we get

Au2 +Au3 +Alog ≤ C‖ξ0‖L∞x

∫ t

0

p(r)H(δ)p(r)/2 dr,

and so

H(δ)
p(t)/2
t −H(δ)

p/2
0 ≤ Au1 +Astoch +Asecond−order−1 +Asecond−order−2 + C‖ξ0‖L∞x

∫ t

0

p(r)H(δ)p(r)/2 dr.

At this point we control the square of the L2
ω(Ct) norm of each addend of the right hand side. For the term

Au1, we make the change of variable x′ = Φε(x), y′ = Φε(y) and use the measure preserving property of Φε,
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getting, via Young inequality (with exponents p(r)/2 and its conjugate),

E sup
s∈[0,t]

A2
u1 ≤E‖ξ0‖2L∞x

∫ t

0

p(r)2

4
H(δ)p(r)−2

(∫
T2

∫
T2

|Kε(Φε(x)− Φε(y))−K(Φε(x)− Φε(y))|dxdy

)2

dr

≤CE‖ξ0‖2L∞x

∫ t

0

p(r)2(‖Kε −K‖p(r)L1
x

+H(δ)p(r)) dr

≤C‖ξ0‖L∞x (eC‖ξ0‖L∞x − 1)‖Kε −K‖pL1
x

+ C‖ξ0‖2L∞x e
C‖ξ0‖L∞x

∫ t

0

E sup
s∈[0,r]

H(δ)p(s)s dr.

For the term Astoch, using Burkholder-Davis-Gundy inequality and the Lipschitz property of σk we get

E sup
s∈[0,t]

A2
stoch ≤CE

∫ t

0

p(r)2H(δ)p(r)−2

∫
T2

∑
k

|σk(Φε(x))− σk(Φ(x))|2 dxdr

≤C
∑
k

‖σk‖2W 1,∞
x

∫ t

0

p(r)2EH(δ)p(r)r dr

≤CeC‖ξ0‖L∞x
∑
k

‖σk‖2W 1,∞
x

∫ t

0

E sup
s∈[0,r]

H(δ)p(s)s dr.

For the term Asecond−order−1, using again the Lipschitz property of σk we get

E sup
s∈[0,t]

A2
second−order−1 ≤CE

∫ t

0

p(r)2H(δ)p(r)−2

(∫
T2

∑
k

|σk(Φε(x))− σk(Φ(x))|2|D2fδ(Z
ε)|dx

)2

dr

≤C(
∑
k

‖σk‖2W 1,∞
x

)2E
∫ t

0

p(r)2H(δ)p(r)−2

(∫
T2

|Zε||Zε|−1|Zε|dx
)2

dr

≤CeC‖ξ0‖L∞x (
∑
k

‖σk‖2W 1,∞
x

)2E
∫ t

0

sup
s∈[0,r]

H(δ)p(s)s dr.

Similarly for the term Asecond−order−2 we get

E sup
s∈[0,t]

A2
second−order−2 ≤CE

∫ t

0

p(r)2(p(r)− 2)2H(δ)p(r)−4

(∑
k

(∫
T2

|σk(Φε(x))− σk(Φ(x))|dx
)2
)2

dr

≤C(
∑
k

‖σk‖2W 1,∞
x

)2E
∫ t

0

p(r)2(p(r)− 2)2H(δ)p(r)−4

(∫
T2

|Zε|dx
)4

dr

≤CeC‖ξ0‖L∞x (
∑
k

‖σk‖2W 1,∞
x

)2E
∫ t

0

sup
s∈[0,r]

H(δ)p(s)s dr.

Putting all together, we obtain, for some C = C(
∑
k ‖σk‖2W 1,∞

x
) (possibly depending also on p and T ),

E[ sup
s∈[0,t]

H(δ)p(s)s ] ≤E[H(δ)p0] + C‖ξ0‖L∞x (eC‖ξ0‖L∞x − 1)‖Kε −K‖pL1
x

+ C(1 + ‖ξ0‖2L∞x )eC‖ξ0‖L∞x

∫ t

0

E sup
s∈[0,r]

H(δ)p(s)s dr.

Applying first Young inequality and then letting δ → 0 (fδ converges to f uniformly), we obtain

E[ sup
s∈[0,t]

Hp(s)
s ] ≤ C‖ξ0‖L∞x e

C‖ξ0‖L∞x +C‖ξ0‖2L∞x +exp[C‖ξ0‖L∞x ]‖Kε −K‖pL1
x
.
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Since H is uniformly bounded (as Φ and Φε take values on T2) and p(t) is increasing in t, then Hp(s) ≥ cHp(t)

for any s ≤ t, for some c = c(‖ξ0‖L∞) > 0 (depending also on T and p). Therefore we conclude

E[ sup
s∈[0,t]

Hp
s ] ≤E[ sup

s∈[0,t]

Hp(t)
s ]p/p(t) ≤ CE[ sup

s∈[0,t]

Hp(s)
s ]p/p(t) ≤ C‖Kε −K‖p

2/p(t)
L1
x

= C‖Kε −K‖pe
−λt

L1
x

.

5 Vortex approximation for Euler equations

Theorem 18. Let M ∈ R+ and ξ0 ∈ L∞( T2) such that ‖ξ0‖L∞ ≤ M . Let (xi,N )1≤i≤N ⊂ T2 and

(ξi,N )1≤i≤N ⊂ R such that SN0 := 1
N

∑N
i=1 ξ

i,Nδxi,N is in MM . Assume that

W1(SN0 , ξ0) =: ζN → 0, as N →∞. (33)

Call SN,εt the empirical measure associated to the system (31) with initial condition (xi,N )1≤i≤N and ξt the so-

lution to the Euler equation (1) starting form ξ0. Then, taking the approximation ε(N) = o
(

(− log(ζN ))−(4(2+δ))−1
)

,

the following convergence holds true, on every time interval [0, T ],

d1(SN,ε(N), ξ)→ 0, as N →∞.

Proof. Let ξε be a solution to equation (6). We split

d1(SN,ε, ξ) ≤ d1(SN,ε, ξε) + d1(ξε, ξ). (34)

We will obtain the estimate of the two terms on the right-hand side as a consequence of Corollary 16 and
Theorem 17 respectively.

For the second term in the right-hand side of (34), using the definition of d1, we have

d1(ξε, ξ) ≤E

[
sup
t∈[0,T ]

∫
|Φεt(x)− Φt(x)| |ξ0(x)|dx

]
.

Recall that the initial condition ξ0 is deterministic and in L∞( T2). Hence from Theorem 17 we obtain

d1(ξε, ξ) ≤ C(M)‖Kε −K‖L1 , (35)

which goes to 0 by Lemma 6. For the first term in the right-hand side of (34), we have the following estimate
from Corollary 16,

d1(SN,ε, ξε) ≤ d4(SN,ε, ξε) ≤ 2ecTΓW1(SN0 , ξ0).

From the definition of c and Γ and Lemma (iii) we have that for any δ > 0,

ΓecT ∼ C‖D2Kε‖C0eC‖DK
ε‖p
C0 eC‖DK

ε‖p
2/(2p−4)

C0 ∼ Cε−(3+δ)eCε
−4(2+δ)

∼ eCε
−4(2+δ)

, as ε→ 0,

with C = C(T, α, σ) (note that p = 4 minimizes p2/(2p−4)). We conclude by taking ε(N) = o
(

(− log(ζN ))−(4(2+δ))−1
)

,

so that
ε(N)→ 0 and eε(N)−7(2+δ)

W1(SN0 , ξ0)→ 0, as N →∞.

We show now that starting from a bounded initial vorticity it is always possible to construct a sequence
of empirical measures that satisfies (33).

Lemma 19. Let ξ0 ∈ L∞(T2) with ‖ξ0‖L∞ ≤ M < ∞. There exist families (ξi)i∈N ⊂ [−M,M ] and
(xi)i∈N ⊂ T2 such that

W1

(
1

N

N∑
i=1

ξiδxi , ξ0

)
→ 0, N →∞.
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Proof. There exist two non negative functions ξ+
0 , ξ

−
0 ∈ L∞(T2) such that ξ0 = ξ+

0 − ξ
−
0 , Lebesgue-almost

surely. We define

µ0(dm, dx) :=
1

M
δM (dm)ξ+

0 (x)dx+
1

M
δ−M (dm)ξ−0 (x)dx ∈ P([−M,M ]× T2).

On an abstract probability space (Ω,F ,P), we consider an independent and identically distributed sequence
of random variables (M i, Xi)i∈N with law µ0.

Let ϕ ∈ BL1(T2), then (m,x) 7→ mϕ(x)
M+1 ∈ BL1([−M,M ]× T2). Hence, we have P-a.s.,

W 1

(
1

N

N∑
i=1

M iδXi , ξ0

)
= sup
ϕ∈BL1

∫
[−M,M ]×T2

mϕ(x)

(
1

N

N∑
i=1

δ(Mi,Xi) − µ0

)
(dm, dx).

By the law of large numbers, the right-hand side goes to zero almost surely. Thus, for any ω in a set of full
measure we have that the lemma is satisfied for the families (ξi, xi)i∈N := (M i(ω), Xi(ω))i∈N.

References

[1] D. Barbato, L. A. Bianchi, F. Flandoli, and F. Morandin. A dyadic model on a tree. J. Math. Phys.,
54(2):021507, 20, 2013.

[2] L. Beck, F. Flandoli, M. Gubinelli, and M. Maurelli. Stochastic ODEs and stochastic linear PDEs with
critical drift: regularity, duality and uniqueness. Electron. J. Probab., 24:Paper No. 136, 72, 2019.

[3] H. Bessaih, M. Coghi, and F. Flandoli. Mean field limit of interacting filaments and vector valued
non-linear PDEs. J. Stat. Phys., 166(5):1276–1309, 2017.

[4] H. Bessaih, M. Coghi, and F. Flandoli. Mean field limit of interacting filaments for 3D Euler equations.
J. Stat. Phys., 174(3):562–578, 2019.

[5] H. Bessaih, M. J. Garrido-Atienza, and B. Schmalfuss. Stochastic shell models driven by a multiplicative
fractional Brownian-motion. Phys. D, 320:38–56, 2016.

[6] L. A. Bianchi. Uniqueness for an inviscid stochastic dyadic model on a tree. Electron. Commun. Probab.,
18:no. 8, 12, 2013.

[7] L. A. Bianchi and F. Flandoli. Stochastic navier-stokes equations and related models, 2020.

[8] L. A. Bianchi and F. Morandin. Structure function and fractal dissipation for an intermittent inviscid
dyadic model. Comm. Math. Phys., 356(1):231–260, 2017.
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1066, 1963.

18


	Introduction
	Preliminaries
	Spaces of measures
	The noise
	The Biot-Savart kernel

	Vortex approximation for regularized Euler equations
	Convergence of regularized Euler equations
	Vortex approximation for Euler equations

