Aortic valve stenosis (AS) is a pathological condition that affects about 3% of the population, representing the most common valve disease. The main clinical feature of AS is represented by the impaired leaflet motility, due to calcification, which leads to the left ventricular outflow tract obstruction during systole. The formation and accumulation of calcium nodules are driven by valve interstitial cells (VICs). Unfortunately, to date, the in vitro and in vivo studies were not sufficient to fully recapitulate all the pathological pathways involved in AS development, as well as to define a specific and effective pharmacological treatment for AS patients. Cyclophilin A (CyPA), the most important immunophilin and endogenous ligand of cyclosporine A (CsA), is strongly involved in several detrimental cardiovascular processes, such as calcification. To date, there are no data on the CyPA role in VIC-mediated calcification process of AS. Here, we aimed to identify the role of CyPA in AS by studying VIC calcification, in vitro. In this study, we found that (i) CyPA is up-regulated in stenotic valves of AS patients, (ii) pro-calcifying medium promotes CyPA secretion by VICs, (iii) in vitro treatment of VICs with exogenous CyPA strongly stimulates calcium deposition, and (iv) exogenous CyPA inhibition mediated by CsA analogue MM284 abolished in vitro calcium potential. Thus, CyPA represents a biological target that may act as a novel candidate in the detrimental AS development and its inhibition may provide a novel pharmacological approach for AS treatment.

Cyclophilin A inhibition as potential treatment of human aortic valve calcification / G.L. Perrucci, P. Songia, D. Moschetta, V.A. Barbagallo, V. Valerio, V.A. Myasoedova, V. Alfieri, I. Massaiu, M. Roberto, M. Malesevic, G. Pompilio, P. Poggio. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - 158(2020 Aug). [10.1016/j.phrs.2020.104888]

Cyclophilin A inhibition as potential treatment of human aortic valve calcification

G.L. Perrucci
Primo
;
P. Songia
Secondo
;
D. Moschetta;V.A. Barbagallo;V. Alfieri;G. Pompilio
Penultimo
;
2020-08

Abstract

Aortic valve stenosis (AS) is a pathological condition that affects about 3% of the population, representing the most common valve disease. The main clinical feature of AS is represented by the impaired leaflet motility, due to calcification, which leads to the left ventricular outflow tract obstruction during systole. The formation and accumulation of calcium nodules are driven by valve interstitial cells (VICs). Unfortunately, to date, the in vitro and in vivo studies were not sufficient to fully recapitulate all the pathological pathways involved in AS development, as well as to define a specific and effective pharmacological treatment for AS patients. Cyclophilin A (CyPA), the most important immunophilin and endogenous ligand of cyclosporine A (CsA), is strongly involved in several detrimental cardiovascular processes, such as calcification. To date, there are no data on the CyPA role in VIC-mediated calcification process of AS. Here, we aimed to identify the role of CyPA in AS by studying VIC calcification, in vitro. In this study, we found that (i) CyPA is up-regulated in stenotic valves of AS patients, (ii) pro-calcifying medium promotes CyPA secretion by VICs, (iii) in vitro treatment of VICs with exogenous CyPA strongly stimulates calcium deposition, and (iv) exogenous CyPA inhibition mediated by CsA analogue MM284 abolished in vitro calcium potential. Thus, CyPA represents a biological target that may act as a novel candidate in the detrimental AS development and its inhibition may provide a novel pharmacological approach for AS treatment.
Aortic valve stenosis; Calcification; Cyclophilin A; Cyclosporin A analogue; Pharmacological target
Settore MED/23 - Chirurgia Cardiaca
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pharmacol res.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/739775
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact