This book supplies fundamental aspects regarding the use of different nanostructures as heterogeneous catalysts for energy and environmental applications. In recent decades, the attention of both scientific and industrial communities has become increasingly focused on the implementation of groundbreaking nanomaterials in all fields of human activity, especially toward improving energy efficiency and fulfilling environmental demands. Energy and environment represent a perfect blend: energy-saving environmental remediations and promising energetic devices meeting environmental concerns represent potential future challenges that humankind will face. In this context, the fine control of the nanosized species is the real tool to overcome the current issues and to improve the final performances. Herein, from an energetic point of view, oxygen evolution and reduction reactions (OER and ORR) are keys to deeply understanding the behaviour of water splitting devices and fuel cells as well as zinc/air batteries, respectively. Zinc tantalum oxynitride-based photoanodes and nitrogen-modified carbon doped with different metals will be presented and fully characterised. Concurrently, bismuth titanate nanosheets and noble metal core-shell nanoparticles can be adopted to enhance hydrogen evolution through photocatalytic water splitting, exploiting solar energy. Instead, for what concerns the environmental remediation, the use of pure (black, modified, and faceted TiO2, Ga2O3) and composite (graphene/titanate, Zn2–SnO4/BiOBr, g-C3N4/Nb2O5, MnO2/TiO2 and CaIn2S4/ZnIn2S4) nanomaterials allow for air and water purification, especially under solar irradiation. Particularly, the complete photodegradation of noxious species (benzylic acid), organic dyes (rhodamine B, methylene blue and alizarin red), heavy metals (chromium), recalcitrant pharmaceutical active principles (cinnamic acid, ibuprofen and tetracycline), and VOCs (ethanol) will be thoroughly discussed. Finally, we would like to acknowledge all the authors who have contributed to this book with their scientific expertise, and we hope that the readers will find the arguments both useful and interesting.

Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis / [a cura di] G. Cappelletti, C.L. Bianchi. - Basel : MDPI, 2020. - ISBN 9783039288311.

Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis

G. Cappelletti
Primo
Project Administration
;
C.L. Bianchi
Ultimo
Project Administration
2020

Abstract

This book supplies fundamental aspects regarding the use of different nanostructures as heterogeneous catalysts for energy and environmental applications. In recent decades, the attention of both scientific and industrial communities has become increasingly focused on the implementation of groundbreaking nanomaterials in all fields of human activity, especially toward improving energy efficiency and fulfilling environmental demands. Energy and environment represent a perfect blend: energy-saving environmental remediations and promising energetic devices meeting environmental concerns represent potential future challenges that humankind will face. In this context, the fine control of the nanosized species is the real tool to overcome the current issues and to improve the final performances. Herein, from an energetic point of view, oxygen evolution and reduction reactions (OER and ORR) are keys to deeply understanding the behaviour of water splitting devices and fuel cells as well as zinc/air batteries, respectively. Zinc tantalum oxynitride-based photoanodes and nitrogen-modified carbon doped with different metals will be presented and fully characterised. Concurrently, bismuth titanate nanosheets and noble metal core-shell nanoparticles can be adopted to enhance hydrogen evolution through photocatalytic water splitting, exploiting solar energy. Instead, for what concerns the environmental remediation, the use of pure (black, modified, and faceted TiO2, Ga2O3) and composite (graphene/titanate, Zn2–SnO4/BiOBr, g-C3N4/Nb2O5, MnO2/TiO2 and CaIn2S4/ZnIn2S4) nanomaterials allow for air and water purification, especially under solar irradiation. Particularly, the complete photodegradation of noxious species (benzylic acid), organic dyes (rhodamine B, methylene blue and alizarin red), heavy metals (chromium), recalcitrant pharmaceutical active principles (cinnamic acid, ibuprofen and tetracycline), and VOCs (ethanol) will be thoroughly discussed. Finally, we would like to acknowledge all the authors who have contributed to this book with their scientific expertise, and we hope that the readers will find the arguments both useful and interesting.
2020
photocatalysis: nanomaterials; electrocatalysis
Settore CHIM/02 - Chimica Fisica
Settore CHIM/04 - Chimica Industriale
Synthesis and Applications of Nanomaterials for Photocatalysis and Electrocatalysis / [a cura di] G. Cappelletti, C.L. Bianchi. - Basel : MDPI, 2020. - ISBN 9783039288311.
Book (editor)
File in questo prodotto:
File Dimensione Formato  
Synthesis_and_Applications_of_Nanomaterials_for_Photocatalysis_and_Electrocatalysis.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 49.61 MB
Formato Adobe PDF
49.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/737025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact