This survey presents a comprehensive overview of Machine Learning (ML) methods for cybersecurity intrusion detection systems, with a specific focus on recent approaches based on Deep Learning (DL). The review analyzes recent methods with respect to their intrusion detection mechanisms, performance results, and limitations as well as whether they use benchmark databases to ensure a fair evaluation. In addition, a detailed investigation of benchmark datasets for cybersecurity is presented. This paper is intended to provide a road map for readers who would like to understand the potential of DL methods for cybersecurity and intrusion detection systems, along with a detailed analysis of the benchmark datasets used in the literature to train DL models.
A comprehensive survey of databases and Deep Learning methods for cybersecurity and intrusion detection systems / D. Gümüşbaş, T. Yıldırım, A. Genovese, F. Scotti. - In: IEEE SYSTEMS JOURNAL. - ISSN 1937-9234. - (2020), pp. 1-15. [Epub ahead of print]
Titolo: | A comprehensive survey of databases and Deep Learning methods for cybersecurity and intrusion detection systems |
Autori: | |
Parole Chiave: | Cybersecurity; IDS; Deep Learning |
Settore Scientifico Disciplinare: | Settore INF/01 - Informatica Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni |
Data di pubblicazione: | 2020 |
Rivista: | |
Tipologia: | Article (author) |
Data ahead of print / Data di stampa: | 26-mag-2020 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/JSYST.2020.2992966 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
sysj20.pdf | Publisher's version/PDF | Administrator Richiedi una copia |