
IEEE SYSTEMS JOURNAL 1

A Comprehensive Survey of Databases and
Deep Learning Methods for Cybersecurity and

Intrusion Detection Systems
D. Gümüşbaş, T. Yıldırım, A. Genovese, and F. Scotti, Senior Member, IEEE

Abstract—This survey presents a comprehensive overview of
Machine Learning (ML) methods for cybersecurity intrusion
detection systems, with a specific focus on recent approaches
based on Deep Learning (DL). The review analyzes recent
methods with respect to their intrusion detection mechanisms,
performance results, and limitations as well as whether they use
benchmark databases to ensure a fair evaluation. In addition, a
detailed investigation of benchmark datasets for cybersecurity
is presented. This paper is intended to provide a road map
for readers who would like to understand the potential of DL
methods for cybersecurity and intrusion detection systems, along
with a detailed analysis of the benchmark datasets used in the
literature to train DL models.

Index Terms—Cybersecurity, IDS, Deep Learning.

I. INTRODUCTION

CYBERSECURITY systems have been of great impor-
tance since the beginning of the computer network era.

However, security attacks emerged even before that: in 1941,
Alan Turing cracked the Enigma machine, which was designed
to cipher messages [1]. Similar incidents have continued to oc-
cur through the present day; for example, the electrical system
of Massachusetts Institute of Technology (MIT) was hacked
in 1950, Yahoo accounts were stolen in 2014, and several
worldwide organizationswere affected by the WannaCry worm
in 2017 [2], [3]. According to the August 2019 threat reports
from McAfee Labs, the top ten attack vectors at present are
malware, account hijacking, unknown, vulnerability, unautho-
rized access, targeted attack, code injection, Denial of Service
(DoS), defacement, and theft [4]. Hence, not only known but
also unknown attack vectors currently pose a significant cyber
threat.
The recent increase in the volume of data generated and

transmitted over the internet, the need to manage the security
of such data [5]–[7], and the continuing changes/evolution in
intrusion types are causing both the academic and industrial
communities to show increasing interest in the deployment of
cybersecurity systems [8], [9]. To shield computer networks
from attacks, Intrusion Detection Systems (IDSs) are being
deployed to support user authentication, ensure safe access,
and prevent loss of privacy. An IDS first collects and pro-
cesses data and then applies a detection mechanism to raise
alarms, which are sent to a human network analyst for further
screening.

D. Gümüşbaş and T. Yıldırım are with the Department of Electronics and
Communication Engineering, Yıldız Technical University, Istanbul, Turkey
(e-mail: f0415058@std.yildiz.edu.tr; tulay@yildiz.edu.tr).
A. Genovese and F. Scotti are with the Department of Computer Science,

Università degli Studi di Milano, Italy (e-mail: angelo.genovese@unimi.it;
fabio.scotti@unimi.it).

Different IDSs can employ diverse algorithms for detecting
attacks. These algorithms can be classified into three categories
[10]: i) rule-based algorithms, which use prior knowledge
of attacks, such as the corresponding data distributions, to
create a rule system and perform detection; ii) statistics-based
algorithms, which detect anomalies by building a statistical
distribution of intrusion patterns; and iii) Machine Learning
(ML)-based approaches, in which learning algorithms are
adopted to train classifiers that can distinguish among different
types of attacks.
Rule-based methods, while simple and fast to execute,

cannot compensate for incomplete or noisy data and are
difficult to update. To overcome these problems, statistics-
based approaches have been proposed to enable the processing
of imprecise information; however, such methods entail a
high computational cost and have a limited ability to handle
large quantities of data. Recently, ML-based approaches have
increasingly been studied due to their ability to use complex
inference models that can be trained on large quantities of data
to detect complex intrusion patterns [11].
Due to the increasing quantities of data transmitted over

the internet, which are leading to the introduction of new
networking paradigms (e.g., the Internet of Things – IoT,
cloud computing, and fog/edge computing [12], [13]) and
complex inference models (e.g., Deep Learning (DL) [14],
[15]), throughout the remainder of this paper, we will focus
on ML-based approaches to cybersecurity and IDSs.

A. Previous Surveys

This subsection introduces previous surveys published in the
literature on cybersecurity, with a specific focus on ML-based
methods. These surveys were chosen based on the criterion
of being either the most cited or a pacesetter review on a
specific topic. In this paper, in contrast to other surveys in the
literature, we summarize existing surveys based on their strong
points. The objective is to help readers find further material
in accordance with their interests.
One of the most cited surveys in the literature is presented

in [11]. This survey addresses the different ML methods used
in IDSs; describes the structure of Internet Protocol (IP) traffic
features, such as port-based, payload-based, and statistical
features; and provides insight into feature categories such
as packet-level and flow-level features. Although this review
was performed using a limited number of papers published
between 2004 and 2007 and some of the benchmark datasets
described are now out of circulation, it presents valuable
information on how to discover and extract novel IP-based
intrusion patterns/features from network traffic. The review

IEEE SYSTEMS JOURNAL 2

presented in [16], in addition to describing the various ML-
based methods of network intrusion detection, focuses on the
characteristics of the types of intrusion. Therefore, this review
presents how available statistical features can be used and
modified for distributed attack detection and the importance
of the threshold used to process these types of features.
In contrast to [11], [16], the survey presented in [17] focuses

on the use of ML and Data Mining (DM) concepts in IDSs.
This review includes a clear explanation of ML and DM algo-
rithms introduced in highly cited papers published before 2016
as well as their usage in IDSs. Notably, this review does not
include the newest DL methods, such as Convolutional Neural
Networks (CNN); the newest datasets, such as AWID2018
and CICIDS2017; or practical details such as attack frequency
and sample size for the benchmark datasets. Nevertheless, this
review does consider fuzzy logic, neural networks, genetic
algorithms, and rule-based algorithms.
Similar to the survey presented in [17], the work reported in

[18] provides a review of ML methods for IDSs, associating
different types of attacks with the features that can be used to
detect them. In particular, the associated features can provide
insight into how similar features of different types of intru-
sion can support similar approaches to attack detection. For
example, the duration and service features from the KDD99
dataset are the most highly contributing features for detecting
both User-to-Root (U2R) and Remote-to-Local (R2L) attacks,
often causing these two attack types to be misclassified as one
another. Although this paper fails to investigate the newest DL
algorithms and attack types and their most related features, it
provides an extensive survey of feature selection methods.
The review published in [19] surveys ML-based intrusion

detection methods alongside newer DL-based methods. Al-
though this survey focuses on certain specific ML and DL
methods, such as Deep Belief Networks (DBNs) and Recur-
rent Neural Networks (RNNs), as well as known benchmark
datasets, it does not cover other DL algorithms, such as CNNs,
or benchmark datasets such as CICIDS2017. The reviews
presented in [14], [20], [21] also consider DL-based methods.
However, they focus on only a subset of these methods, do
not discuss benchmark datasets, or do not provide detailed
descriptions of the accuracies achieved using DL methods.
In contrast to the previously mentioned surveys, the work

presented in [22] focuses on the different types of attacks
rather than algorithms for IDSs, without providing details on
accuracy. Furthermore, this paper presents an attack taxon-
omy to provide detailed definitions of various attack types,
including how and in which layers they occur. Attack tools
are also explained in great detail for readers who wish to
build IDSs for protection against specific attack types. Al-
though this paper does not provide detailed information about
new benchmark datasets or DL algorithms, a brief review
on industrial IDSs, such as programmable logic controller
systems, is presented. Similarly, the review published in [23]
addresses only application-layer Distributed DoS (DDoS) at-
tacks, describing how they are hidden behind low traffic and
the features used to detect DDoS attacks occurring in the
application layer. Furthermore, this review discusses defense
mechanisms for protecting against these attacks, such as user

puzzles; the limitations of attempts to detect these attacks; and
attack generation scenarios.

Finally, there are several surveys that address specific as-
pects or applications of IDSs. For example, the work reported
in [24] focuses on IDSs for IoT systems, describing their
taxonomy and placement strategies. In a similar manner, the
review presented in [25] discusses DM concepts with IoT
applications. Another example is the survey in [26], which
covers only unsupervised methods used in IDSs. Although
this review is limited to unsupervised methods, it is a good
reference for learning about a variety of feature selection
methods. Additionally, datasets and EU standards (e.g., the
General Data Protection Regulation – GDPR) for data col-
lection and protection are addressed in this review. Other
reviews considering specific aspects of this field include the
work described in [27], which focuses on hardware techniques
for IDS implementation; the paper presented in [28], which
considers only immunity-based approaches; and the survey
published in [29], which describes network security techniques
for supervisory control and data acquisition systems.

B. Contributions

This work is intended to serve as an extensive survey
of databases and methods based on ML and DL that have
been introduced thus far in the literature on cybersecurity and
intrusion detection. This survey focuses on papers published
after 2013, with some exceptions being trendsetter algorithms
or highly cited papers.

Compared to the other surveys on intrusion detection dis-
cussed in Section I-A, this survey makes three main contribu-
tions: i) it summarizes previous surveys with regard to their
level of detail in describing methods for cybersecurity, with the
purpose of encouraging further reading based on the readers’
interests; ii) it focuses on a practical perspective when describ-
ing the relevant datasets, specifically addressing the number
of features, the feature types, and attack distributions rather
than describing general details, feature selection methods, and
algorithms, which are analyzed in other surveys; and iii) it
presents a comprehensive investigation of the newest DL meth-
ods for intrusion detection, analyzing their detection capability,
performance, and limitations as well as the databases used.
This review does not consider previous types of ML methods
since they have been thoroughly addressed in other survey
papers [11], [17], [18].

The remainder of this paper is organized as follows. Sec-
tion II presents a review of cybersecurity datasets, including
the data collection steps, feature and attack types, bench-
mark datasets, and reliability criteria. Section III reviews and
analyzes DL-based intrusion detection methods, considering
DBNs, Autoencoders (AEs), CNNs, Long Short-Term Mem-
ory (LSTM) networks, and Generative Adversarial Networks
(GANs). Section IV provides a discussion of and insights into
the limitations and current research trends regarding public
datasets and IDSs. Finally, Section V concludes this work.
Table I summarizes the acronyms and notations used in this
paper.

IEEE SYSTEMS JOURNAL 3

TABLE I
LIST OF ACRONYMS AND NOTATIONS USED IN THIS PAPER

Notation Description
ML Machine Learning
DL Deep Learning
DM Data Mining
IDS Intrusion Detection System
IoT Internet of Things
IP Internet Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
GDPR General Data Protection Regulation
PCAP Packet CAPture
SSH Secure Shell
FTP File Transfer Protocol
SQL Structured Query Language
SYN TCP packet used to request a connection
DoS Denial of Service
DDoS Distributed Denial of Service
U2R User-to-Root
R2L Remote-to-Local
XSS Cross-Site Scripting
k-NN k-Nearest Neighbor
ANN Artificial Neural Network
SVM Support Vector Machine
RBM Restricted Boltzmann Machine
DBN Deep Belief Network
AE Autoencoder
CNN Convolutional Neural Network
RNN Recurrent Reural Network
LSTM Long Short-Term Memory
GAN Generative Adversarial Networks
PCA Principal Component Analysis

II. CYBERSECURITY DATASETS

This section presents a review of cybersecurity datasets,
outlining the data collection steps, feature and attack types,
available benchmark databases, and reliability criteria.

A. Data Collection

This section presents the methods of data collection used
in cybersecurity applications. Specifically, data collection can
be performed in two different ways. The first is based on
processing system calls (system logs) from host-based oper-
ating systems. The second is based on packet headers and
payloads extracted from network traffic packages and from
applications using the Transmission Control Protocol (TCP)/IP
communication stack [30].
The two main methodologies used to collect network traffic

in the second way are full Packet CAPture (PCAP) and the
NetFlow protocol:

PCAP enables the collection of the most detailed data
from a network because it involves the extraction of
whole network packets (including packet headers) for
all information being transmitted. In particular, the data
collected from such packets include the packet size,
protocol types, headers of flows, flags, source and des-
tination IP addresses, and source and destination port
numbers [31]. However, the information contained in
the payload of a packet may be deleted or anonymized
due to privacy issues. In fact, a packet payload may
contain sensitive data such as private information, instant
messaging conversations, or a history of visited websites.
In most cases, a trade-off must be established between
anonymizing payloads to protect user privacy and using
all collected data to achieve accurate attack detection.
This trade-off is especially important to consider in the

TABLE II
PROGRAMS USED TO CAPTURE AND PREPROCESS NETWORK TRAFFIC

Method Step Program Ref.

PCAP

Capture
libPCAP [32]
winPCAP [33]
SNORT [34]

Preprocessing

Wireshark [35]
tshark [36]
tcpdump [37]
networkminer [38]
rapidminer [39]
scapy [40]

NetFlow Capture/Preprocessing
Cisco NetFlow [41]
nfdump [42]

case of nonflooding attack types such as R2L and U2R
attacks, which are performed using packet payloads.
NetFlow enables the collection of summary information
or certain predefined attributes related to the flow of
packets in a network. Examples of the features that can be
extracted include the number of packets in given a time
period or the size of data transmitted over the network.
Although data collection via NetFlow is more memory
efficient than data collection via PCAP, only summary
data are considered, and it is not possible to extract new
types of features to address new needs.

The most commonly used programs for performing PCAP
are libPCAP, winPCAP and SNORT. In addition, several
programs allow the preprocessing of PCAP files to extract
different types of features. For example, such preprocessing
programs include Wireshark, tshark, tcpdump, networkminer,
rapidminer and scapy. The most commonly used programs for
capturing and preprocessing NetFlow data are Cisco NetFlow
and nfdump. Table II summarizes the various programs used
to capture and preprocess network traffic using the PCAP and
NetFlow methodologies.

B. Feature Types

This section examines the types of features extracted from
the available datasets. Although new features are added when
novel attack patterns are discovered, there are several reoccur-
ring feature types in the literature.
First, a distinction can be drawn between host-based and

network-based data based on the procedure used to collect the
data, as described in Section II-A. In most cases, host-based
data are composed of system/operation logs, which consist of
attributes such as system calls. Feature extraction from system
calls is generally performed using methods based on natural
language processing, such as n-grams [43].
On the other hand, network-based data are obtained by

collecting network traffic data. However, network traffic is
composed of many individual packets/frames, and feature
extraction must be performed for each traffic session, known
as flow-level traffic data, to reduce the dimensionality of the
data and detect intrusions. Such feature extraction is conducted
based on three different types of features: basic, traffic-based,
and content-based features.

Basic features are extracted from TCP/IP connections and
can be classified as header-based, flow-based, connection-
based, or packet-based features. Header-based features are
related to the packet header and include the source and
destination IP addresses, the TCP and User Datagram

IEEE SYSTEMS JOURNAL 4

Protocol (UDP) source and destination ports, the IP
protocol, the service, and the IP header length. Flow-
based features include attributes computed through anal-
ysis of the flow. In particular, a flow is defined as a
set of packets having a common set of properties (flow
keys), which may include IP addresses, port numbers,
or meta-information [44]. Examples of flow-based fea-
tures are statistical aggregations (e.g., average, maximum,
minimum) on the size, time of arrival, and number of
inbound/outbound packets in a given time period, the du-
ration of that period, and the type of packets. Connection-
based features are related to a particular connection,
which is defined as a stream of packets between two
specific IP addresses. Such features include the interval
between packets, the timestamp, and the time to live. Fi-
nally, packet-based features are related to the transmitted
data and include the payload and mean number of bytes
of a packet. The main advantage of basic features is that
they are general and can be used to detect several kinds
of attacks [45], [46].
Traffic-based features are associated with either a specific
time interval (e.g., 2 seconds) or a specific number of
connections (e.g., 100 connections). These features can be
extracted by considering either the same host or the same
service. In the first case, the extracted features include
statistical sums of connections with the same destination
host, whereas in the second case, the extracted features
comprise statistical sums of connections to the same ser-
vice for a fixed amount of time or number of connections
[45]. One drawback of traffic-based features is that some
attack types span time intervals longer than 2 seconds
or a number of connections greater than 100. Examples
of such attack types include low-frequency attack types
such as U2R, R2L, and low-rate DoS attacks, in which the
frequency of the transmitted information is similar to that
of legitimate traffic, in contrast to high-frequency attack
types, which exhibit a higher frequency than normal
traffic. Although some newly proposed connection-based
features span time intervals longer than 2 seconds, these
features are not fully adequate for identifying such attack
patterns [45].
Content-based features are extracted from information
embedded in different data portions of packets and in-
clude the number of requests, the request type, and the
number of failed login attempts. Content-based features
are especially useful for detecting low-frequency attack
types, which do not exhibit sequential patterns as high-
frequency attacks do. In fact, while traffic-based fea-
tures can be used to detect high-frequency attacks, low-
frequency attacks are difficult to detect using only basic
and traffic-based features, and in most cases, content-
based features are also required [45].

C. Attack Types

This section outlines the various attack types considered
in IDSs. In particular, we present the following attack types,
since they are the ones considered in the most frequently used
benchmark datasets [48]:

Denial of Service (DoS) [45] attacks are based on tem-
porarily blocking the normal use of network utilities
by flooding the network with traffic. Examples of DoS
attacks include botnet, Slowloris, smurf, and SYN flood
attacks.
Distributed DoS (DDoS) [46] attacks are based on flood-
ing the server and making it unable to respond by over-
loading it with service requests. Unlike in DoS attacks,
the flooding is performed via many sources. Examples of
DDoS attacks include local area network denial (LAND),
ping-of-death, RUDY, and teardrop attacks.
User-to-Root (U2R) [45] attacks involve behaving as a
normal user with the aim of detecting system vulnerabil-
ities and gaining root access. Examples of U2R attacks
include buffer overflow, rootkit, Perl, and loadmodule
attacks.
Remote-to-Local (R2L) [45] attacks attempt to use a
remote system to gain unauthorized access to and damage
the target system. R2L attacks may be combined with
U2R attacks, making these types of attacks difficult to
differentiate. Examples of R2L attacks include Secure
Shell (SSH) brute force, warezmaster, multihop, imap,
and spy attacks.
Probe [45] attacks are based on searching for vulnerabili-
ties throughout the whole network by sending scan pack-
ets and gaining information about the system. Examples
of probe attacks include Satan, IP sweep, and port sweep
attacks.
Password [18] attacks attempt to gain unauthorized access
to the system by using guessing techniques to steal
passwords. Examples of password attacks include brute
force FTP-Patator and brute force SSH-Patator attacks.
Injection [47] attacks use scripts that inject com-
mands/queries with the purpose of gaining unauthorized
access and stealing information. Examples of injection
attacks include SQL injection and Cross-Site Scripting
(XSS).

Table III lists the attack types considered in the most fre-
quently used benchmark datasets, along with their definitions.

Although the definitions provided in Table III can be used to
distinguish the different attacks, three additional factors must
be considered when designing an IDS. First, an attack of one
type may be the beginning of another attack of a different
type. In this case, the characteristics of the true attack will be
a combination of the characteristics of both attacks. Second,
some attack characteristics may evolve over time. For instance,
DDoS attacks are mostly understood to be high-frequency
attacks that flood the bandwidth of a network; however, DDoS
attacks in the application layer are low-frequency attacks that
flood the server instead of flooding the network. Third, some
attack types may show similar patterns. For example, both
DoS and probe attacks, in most cases, exhibit sequential
patterns and involve a large number of connections to the
same host, whereas R2L and U2R attacks are both embedded
in packets. Therefore, although DoS and probe attacks are
easy to differentiate from R2L and U2R attacks, it may not
be as easy to differentiate DoS attacks from probe attacks or

IEEE SYSTEMS JOURNAL 5

TABLE III
ATTACK TYPES REPRESENTED IN THE MOST FREQUENTLY USED CYBERSECURITY BENCHMARK DATASETS

Attack name Examples Description

Denial of Service (DoS) [45] Botnet, Slowloris, smurf, SYN flood
Temporarily blocks the normal use of network utilities by flooding the network
with traffic.

Distributed DoS (DDoS) [46] LAND, ping of death, RUDY, teardrop
Floods the server and makes it nonresponsive to users by overloading it with
service requests. Unlike in DoS attacks, the flooding originates from many
sources.

User-to-Root (U2R) [45] Buffer overflow, rootkit, Perl, loadmodule
Behaves as a normal user with the aim of detecting system vulnerabilities and
gaining root access.

Remote-to-Local (R2L) [45] SSH brute force, warezmaster, multihop, imap, spy
Gains local access via a remote system and damages the system. May be
combined with U2R attacks, thus making these attacks difficult to differentiate.

Probe [45] Satan, IP sweep, port sweep
Searches for vulnerabilities throughout the whole network via IP addresses by
sending scan packets and gaining information about the system.

Password [18] Brute force FTP-Patator, brute force SSH-Patator Gains access to the system after stealing passwords by guessing.

Injection [47] SQL injection, Cross-Site Scripting (XSS)
Uses a script to inject commands/queries to gain unauthorized access and steal
information.

U2R attacks from R2L attacks due to their similar embedding
patterns.
To increase the effectiveness of differentiating among attack

types, several studies have investigated which types of features
are effective for detecting particular attack types. For example,
the authors of [18] report that on the basis of the features
contained in the KDDCUP99 dataset, even though DoS attacks
can be differentiated using basic and traffic-based features,
considering some sparse features, such as flags, destination IP
addresses, percentages of connections to the same service, and
percentages of connections to the same port, can result in more
effective detection. Similarly, duration, service, destination
host same service rate, and flag features are vital for detecting
probe (scanning) attacks. The most important features for
detecting U2R attacks are the number of failed logins, number
of shells, number of roots, duration, and service. For R2L
attacks, the most important features are the duration, service,
service bytes, destination bytes, number of failed logins, count,
destination host count, and destination host service count. As
seen above, the features used to detect attacks of the probe,
U2R, and R2L types show a high degree of similarity, which
explains why these three attack types are often misclassified
among each other.

D. Benchmark Datasets

This section introduces and analyzes benchmark datasets
for intrusion detection, considering both the extent to which
they reflect novel attack types due to the evolving nature of
intrusion patterns over time and their shortcomings. For the
benchmark datasets considered in this section, Table IV lists
the most frequently used datasets, while Table V summarizes
the distribution of the samples in each dataset across the
different attack types considered.
1) AWID2018: Also known as CSE-CIC-IDS2018, this

dataset includes databases for training and testing collected
using two different capture procedures. The data collected
using the first procedure consist of full-packet network traffic
with system logs, while the data collected using the second
procedure consist of reduced packet traffic. The dataset in-
cludes two different labels for attacks: a main attack label and
a subattack label. This dataset has the advantages of including
the newest attack types, such as password attacks based on
the SSH/FTP brute force approach, injection attacks based on
SQL injection, and flooding attacks based on DoS. However,
the data exhibit some limitations, such as noisy, misleading

features and uncategorized samples. The dataset consists of
155 features extracted using Wireshark [49].
2) CICIDS2017: This dataset was created from realistic

traffic data at the Canadian Institute for Cybersecurity of the
University of New Brunswick (UNB) in 2017 and includes a
full-packet dataset with 152 features and raw PCAP files [50].
The dataset considers attacks and subattacks such as injection
attacks based on SQL injection and XSS, password attacks
based on brute force FTP-Patator and brute force SSH-Patator,
and flooding attacks based on DoS, Goldeneye DDoS, HULK
DDoS, slow HTTP DDoS, Slowloris DDoS, and Heartbleed.
Although the criteria for a reliable dataset proposed by [54]
are satisfied, one feature among the attributes is duplicated.
3) KDD99/KDDCup99: Also known as KDDCup99, the

KDD99 dataset was created using DARPA 1998 PCAP files
and includes full-packet data, divided into subsets for training
and testing [51].
This dataset considers DoS-based subattacks such as back,

LAND, ping of death, teardrop, Neptune, and smurf attacks;
U2R subattacks such as buffer overflow, loadmodule, Perl,
and rootkit attacks; R2L subattacks such as ftp-write, guess-
password, imap, multihop, PHF, spy, warezclient, and warez-
master attacks; and probe-based subattacks such as port sweep,
IP sweep, NMAP, and Satan attacks. As of 2019, this dataset
remains the most widely used benchmark dataset in the field of
network intrusion detection. However, this dataset suffers from
several limitations, including duplicated samples, different
probability distributions between the training and test data,
unbalanced classes, and a lack of coverage of the newest attack
types.
4) NSL-KDD: This dataset was created by erasing all

duplicate records from the KDD99 dataset and using sampling
techniques to balance the number of data samples in each class
[45]. This dataset includes separate databases for training and
testing, where the test database consists of fourteen subattack
types that are not present in the training database. NSL-KDD
is not subject to most of the limitations of the KDD99 dataset;
however, this dataset still lacks newer attack types.
5) Kyoto: This dataset was created from honeypots at

Kyoto University and consists of traffic data collected daily
between 2006 and 2015 [52]. The dataset includes 24 features,
fourteen of which are in common with the KDD99 dataset, and
labels indicating normal data, known attacks, and unknown
attacks. The dataset is missing data from some days and
months during the time of its collection, and the average

IEEE SYSTEMS JOURNAL 6

TABLE IV
OVERVIEW OF THE MOST FREQUENTLY USED CYBERSECURITY BENCHMARK DATASETS

Ref. Name Year Num. of features Num. of samples Attack types Separate train-test sets

[49] AWID2018 2018 155
210900113 (full)
2326218 (reduced)

Flooding, impersonation, injection Yes

[50] CICIDS2017 2017 152 2830743
DoS/DDoS, port scan, FTP-Patator, SSH-
Patator, bot, web attacks, infiltration, Heart-
bleed

No

[51] KDD99 1999 42
4900000 (full)
494021 (subset)
311029 (testing)

DoS, probe, U2R, R2L Yes

[45] NSL-KDD 2009 42

125973 (training)
22544 (testing)
25192 (training)
11850 (testing)

DoS, probe, U2R, R2L Yes

[52] Kyoto 2006-2015 24 Various Known, unknown No

[53] UNSW-NB15 2015 49
2540047 (full)
175341 (training)
82332 (testing)

Fuzzers, worms, shellcode, analysis, back-
doors, DoS, exploits, generic, reconnaissance Yes

Notes: * = including 1 feature as a label; ** = including 2 features as labels; *** = at the time of this survey.

TABLE V
DISTRIBUTIONS OF ATTACK TYPES IN THE MOST FREQUENTLY USED BENCHMARK DATASETS

Name AWID2018
Attack Normal Flooding Impersonation Injection
N. samples 205074514 1409392 2361892 2054315
(Perc.) (97.24%) (0.67%) (1.12%) (0.97%)
Name CICIDS2017
Attack Benign DoS DDoS Port scan FTP-P. SSH-P. Bot Web att. Infiltr. Heartb.
N. samples 2273097 252661 128027 158930 7938 5897 1966 2180 36 11
(Perc.) (80.3004%) (8.9257%) (4.5228%) (5.6144%) (0.2804%) (0.2083%) (0.0695%) (0.077%) (0.0012%) (0.0003%)
Name KDD99
Attack Normal DoS Probe U2R R2L
N. samples 972781 3683370 41102 52 1126
(Perc.) (20.71%) (78.4%) (0.8897%) (0.0001%) (0.0002%)
Name NSL-KDD
Attack Normal DoS Probe U2R R2L
N. samples 77054 53385 14077 252 3649
(Perc.) (51.9%) (35.9%) (9.5%) (0.2%) (2.5%)
Name Kyoto
Attack Normal Known attacks Unknown attacks
N. samples 1186780 11218206 563
(Perc.) (9.5706%) (90.429%) (0.0004%)
Name UNSW-NB15
Attack Fuzzers Worms Shellcode Analysis Backdoors DoS Exploits Generic Rec.
N. samples 24246 174 1511 2677 2329 16353 44525 215481 13987
(Perc.) (7.572%) (0.054%) (0.47%) (0.83%) (0.72%) (5.112%) (13.8%) (67.092%) (4.35%)

Notes: N. samples = Number of samples; Perc. = Percentage; FTP-P. = FTP-Patator; SSH-P. = SSH-Patator; Web att. = Web attacks; Infiltr. = Infiltration; Heartb. = Heartbleed;
Rec. = Reconnaissance. The largest remainder method was used when computing the percentages to ensure a total of .

number of samples per month is approximately twelve million.
Since the traffic was captured from honeypots, which are
designed to protect against less advanced attackers, most of the
monitored attacks did not originate from advanced attackers.
Therefore, the dataset may not be representative of realistic
attacks.

6) UNSW-NB15: This dataset was synthetically created at
the Cyber Range Lab of the Australian Centre for Cybersecu-
rity and includes full, training, and test datasets as well as
raw PCAP files. The dataset includes 49 features and two
label attributes: the first label describes the attack, and the
second label is binary. The dataset considers attacks such as
fuzzers, backdoors, shellcode, DoS attacks, worms, generic
attacks, reconnaissance attacks, exploits, and analysis attacks
[53]. One of the limitations of this dataset is the existence of
several missing samples.

7) DARPA: This dataset was created at the MIT Lincoln
Laboratory in 1998 and includes full, training, and test sets
of raw PCAP files [55]. The newer versions of the DARPA
dataset, DARPA 1999 and DARPA 2000, are based on the
1998 version. This dataset is one of the most commonly

used intrusion detection datasets; however, it is commonly
considered to be outdated and to contain irregularities [56].

8) ISCX IDS 2012: Also known as UNB or UNB ISCX
2012, this dataset was created at UNB in 2012 and includes
full-packet network data [57]. The dataset includes normal
traffic data and attack data for attack types such as infil-
tration, DoS, DDoS, and brute force SSH attacks. Although
this dataset includes some of the newest attack types, it is
criticized as being unrealistic for not containing sufficient
internet background noise, as it consists of pure network traffic
rather than data received by any real device [58].

9) CIC DoS: This dataset was created at the Canadian
Institute for Cybersecurity of UNB in 2017 [59]. It considers
the application layer and incorporates data that describe high-
volume (traditional) DoS attacks, data corresponding to low-
volume DoS attacks, and normal data from the ISCX IDS 2012
dataset.

10) Gure-KddCup: This dataset was created using the
PCAP data from the DARPA 1998 dataset [60]. It includes
features similar to those of the KDD99 dataset, with the
addition of payload information and other new features, such

IEEE SYSTEMS JOURNAL 7

as IP addresses and port numbers, to make U2R and R2L
attacks more visible/distinguishable [61].
11) CDX: The Cyber Defence Exercises (CDX) dataset

[62] was collected from the United States Military Academy
network in 2009 and consists of PCAP data extracted from
system logs, divided into intrusion traffic and normal traffic
[56].
12) ASNM-CDX: This dataset was created from the CDX

network traffic data in 2009. The dataset includes 5772
samples, each with 875+1+1 features. It includes distributed
features often used in detecting low-frequency attacks, such
as the number of packets and the total bytes in/out from four
seconds to fifty-four seconds. In some cases, the features have
been converted with the fast Fourier transform to increase
their discriminative ability. This dataset has two attack label
attributes: the first label discriminates between legitimate and
malicious traffic, and the second label indicates whether the
attack is based on buffer overflow. However, this dataset lacks
traffic diversity since it consists only of buffer overflow attacks
[63].
13) LBNL: This dataset was created at the Lawrence Berke-

ley National Laboratory (LBNL) between 2004 and 2005.
Although the dataset includes packet headers, the payloads
are anonymized due to privacy issues, which limits its infor-
mativeness [64].
14) ISOT: This dataset was created in 2010 by combining

Storm, Waledac, and Zeus botnet attack data from the French
Chapter of the Honeynet Project and normal traffic data from
the Traffic Lab at Ericsson Research and LBNL [65].
15) MAWI: This dataset was collected by the MAWI Work-

ing Group in Japan and includes continuously updated traffic
data from 2001 to 2019. A graph-based methodology has been
used to label the raw data as either abnormal or normal [66].
One of the limitations of this dataset is duplicated packets.
16) CTU-13: This dataset is a combination of botnet traffic

data, normal data, and background data collected at Czech
Technical University in Prague (CTU) in 2011. Although the
data consist of a variety of botnet scenarios and extended
truncated versions of PCAP files with complete TCP, UDP and
Internet Control Message Protocol (ICMP) headers, the dataset
is specifically designed only for botnet detection. Therefore,
it is considered unrealistic to mix these data with normal and
background traffic [67].
17) UMass: This dataset was collected between 2004 and

2018 and contains traffic data such as Tor traffic data, Gateway
Link 3 Trace data, web requests, and response data. However,
most of the data were collected under similar network traffic
conditions and lack a broad variety of attacks [68].
18) Twente: This dataset was created from honeypots at

the University of Twente in 2009 and consists of more than
fourteen million flows and more than seven million alerts. In
this dataset, some samples are left unlabeled, and informative
data from the packet headers and payloads are anonymized
[69]. This dataset has the limitation that traffic originating from
honeypots does not represent realistic attacks since honeypots
are designed to protect against less advanced attackers.
19) CAIDA: The CAIDA dataset consists of a variety of

different databases that are specific to particular events, such

as network telescope and DDoS databases [58], [70]. Although
there are a few up-to-date databases, such as CAIDA DDoS,
most do not accurately represent the different possible types
of attacks. For instance, the DoS attack databases consist only
of spoofed-source DoS attacks and exclude other versions of
DoS attacks.
20) DEFCON: The DEFCON datasets are created for in-

trusion modeling competitions held every year. Although these
datasets are continuously created, they focus only on intrusions
and attacks and lack normal background traffic [58]. Therefore,
they are not frequently used for network intrusion detection.
21) Others: In addition to the most commonly used bench-

mark datasets, a variety of publicly available raw traffic
datasets exist. These datasets include Metrosec, UNIBS 2009,
TUIDS, the University of Napoli traffic dataset, payload
datasets such as the CSIC 2010 HTTP Dataset, the UNM
system call dataset, and an enormous variety of network traffic
from the Capture the Flag Competitions (CTF) and CDX.
Moreover, several host-based datasets also exist, including
the ADFA Linux Dataset (ADFA-LD), the ADFA Windows
Dataset (ADFA-WD) and the ADFA Windows Dataset Stealth
Attacks Addendum (ADFA-WD:SAA) [71].

III. DL-BASED INTRUSION DETECTION METHODS

Traditional ML-based methods for cybersecurity include
approaches based on the k-Nearest Neighbor (k-NN) algo-
rithm, k-means clustering, Artificial Neural Networks (ANNs),
fuzzy logic, Bayesian networks, hidden Markov models, self-
organizing maps, decision trees, evolutionary classifiers, Sup-
port Vector Machines (SVMs), and rule-based systems [17],
[18], [22], [26]. In this survey, we focus on the more recent
DL-based approaches, which have not been covered in detail
in previous surveys.
To provide up-to-date descriptions of the recent methods

developed for cybersecurity, this section describes DL-based
methods for intrusion detection. For each algorithm, we
consider evaluation criteria such as a fast run/convergence
time, a high detection ability with a low false positive rate,
adaptability to novel intrusions, computational efficiency, and
scalability [16]. In the remainder of this section, we consider
DL methods based on DBNs, AEs, CNNs, LSTM networks,
and GANs [15]. A summary of the presented DL methods in
the IDS context is presented in Table VI.

A. Deep Belief Networks (DBNs)

DBNs are a type of ANN obtained by stacking together
several Restricted Boltzmann Machines (RBMs [77]), which
act as the layers of the DBN, and introducing connections
between the layers but not within each layer. The RBMs used
to construct a DBN consist of two main layers, one visible
and one hidden, constituted by a variable number of neurons.
Additionally, within each RBM, the neurons of different layers
are fully connected, whereas the connections within the same
layer are restricted [72]. Fig. 1 shows an example of a DBN.
Because of their layered structure, DBNs have the advantage

that fast learning procedures can be used, which can be applied
in a greedy fashion, layer by layer, in an unsupervised way
[78]. As a consequence of this advantage, methods based

IEEE SYSTEMS JOURNAL 8

TABLE VI
SUMMARY OF DL-BASED METHODS FOR INTRUSION DETECTION

Method Description Pros Cons
Deep Belief
Networks (DBNs)
[72]

Stacks of Restricted Boltzmann Machines (RBMs) with
connections between the layers but not within each
layer.

Fast and unsupervised layer-by-layer learning in
a greedy fashion. Unsupervised dimensionality
reduction.

Training uses an approximation of
the gradient.

Autoencoders
(AEs) [73]

Encoder-decoder structure that maps input data to a
hidden space and then reconstructs them.

Can be trained in an end-to-end manner using
learning algorithms based on gradient descent.
Unsupervised dimensionality reduction.

Requires an additional ML model
to perform classification.

Convolutional
Neural Networks
(CNNs) [74]

Sequences of convolutional layers trained via gradient
descent.

Performs classification while automatically learn-
ing data representations. Learns discriminant spa-
tial patterns invariant to translation and shifting.

Computationally expensive to train.
Not naturally suited to processing
data in time-series form.

Long Short-Term
Memory
(LSTM) [75]

Neurons arranged in a temporal sequence, able to
maintain memory for arbitrary intervals of time. Can natively process time-series data.

The research community is increas-
ingly focusing on CNNs rather than
LSTM networks.

Generative Adv.
Networks (GANs)
[76]

Combination of a generator, which generates data start-
ing from a random distribution, and a discriminator,
which distinguishes real data from synthetic data.

Learns data distributions in an unsupervised man-
ner.

Often requires visual inspection of
the results.

Fig. 1. Example of a Deep Belief Network (DBN). DBNs are obtained by
stacking together several Restricted Boltzmann Machines (RBMs), which act
as the layers of the DBN. In DBNs and RBMs, neurons of different layers
are fully connected, while connections within the same layer are restricted.

on DBNs were among the first DL-based approaches studied
for intrusion detection. In addition, the ability to train DBNs
using fast and unsupervised learning algorithms makes them
particularly suitable for performing a preliminary dimension-
ality reduction step, with the aim of extracting a compact and
discriminant representation of the data, without the need for
labels, even in the case of large intrusion detection databases.
For example, in the method described in [79], proposed in
2011, a DBN was first applied to perform a feature reduction
step, and an SVM was then used to classify the intrusions
contained in the NSL-KDD dataset. Similarly, the approach
proposed in [80] is based on a DBN, the parameters of
which are first optimized via particle swarm optimization to
map the input data to a space of reduced dimensionality.
Then, a probabilistic neural network is trained to perform
classification.

More recent methods have introduced ML architectures
based on deeper DBNs, such as the approaches described in
[81]–[83], which have achieved improved detection accuracy
on the NSL-KDD and KDD99 datasets.

DBNs have the drawback that it is computationally unfeasi-
ble to train them end to end in a supervised way using gradient
descent methods. Due to this drawback, in most cases, DBNs
are trained using training algorithms based on contrastive
divergence, which rely on an approximation of the gradient
[84]. Recently, however, the growing availability of computing
power and GPU-based training architectures (e.g., CUDA [85])
has made it possible to train DL models using end-to-end
learning algorithms based on gradient descent, without the
need to approximate the gradient [15]. Examples of recent
DL models trained end to end include AEs, CNNs, LSTMs,
and GANs.

Fig. 2. Example of an Autoencoder (AE). The same data are used as both
input and target: the encoder maps the input data to a hidden space in a
nonlinear manner, and the decoder reconstructs the input data by mapping
the encoded data back to the original input space.

B. Autoencoders (AEs)

AEs are a type of ANN used to learn and reconstruct a
representation of input data. In AEs, the same data are used as
both input and target, with the purpose of learning a model that
can extract a compact and discriminant representation of the
input data in an unsupervised manner. Such a representation
can then be used as input to a classifier to perform detection.
An AE consists of two components: an encoder and a decoder.
The encoder maps the input data to a hidden space in a
nonlinear manner, and the decoder reconstructs the input data
by mapping the encoded data back to the original input space.
The purpose of the decoder is to minimize the reconstruction
error, defined as the difference between the input data and the
reconstructed data [73]. Fig. 2 shows an example of an AE.
Because of their ability to extract a compact and highly dis-

criminative representation with reduced dimensionality from
input data, AEs are often used as a preprocessing step in
intrusion detection. In most cases, the related approaches
presented in the literature involve using AEs to preprocess the
input data, followed by the application of an ML classifier. In
contrast to DBNs, AEs can be trained in an end-to-end manner
using learning algorithms based on gradient descent, without
the need to approximate the gradient [15]. For example, in the
method described in [86], an AE with seven layers is used to
obtain a compact and discriminant representation of the input
data. On the NSL-KDD dataset, this method achieves superior
detection accuracy compared with other dimensionality reduc-
tion methods based on principal component analysis (PCA)
and kernel PCA. Its main limitation is the lack of information
about the shallow classifiers used to classify the data after the

IEEE SYSTEMS JOURNAL 9

dimensionality reduction phase. Similar to that in [86], the
method proposed in [87] involves applying an AE to the input
data to extract features, which are then classified using shallow
classifiers such as naive Bayes, k-NN, and SVM classifiers.
This work considers the NSL-KDD dataset and reports higher
accuracy than that achieved by previous methods, particularly
when using the naive Bayes classifier.
Several methods in the literature combine an AE with a

density estimation model to achieve greater detection accuracy.
For example, the method proposed in [88] adopts a combined
approach based on an AE and density estimation. This method
achieves a high detection accuracy on the NSL-KDD dataset,
especially for DoS and probe attacks. The method described
in [89] extends the previous method by combining an AE with
a Gaussian mixture model to perform intrusion detection. The
model consists of an estimation network, which evaluates the
densities of the samples in a low-dimensional space, and a
compression network, which projects the data into a lower-
dimensional space. A procedure based on joint parameter
optimization is used to update the model parameters. On the
KDD99 dataset, this method achieves a significant accuracy
improvement compared to baseline methods using pretrained
AEs.
A variant of AEs is represented by sparse AEs, which

use a sparsity constraint to further reduce the dimensionality
of the obtained representation [73]. Specifically, the method
described in [90] uses a sparse AE combined with a soft-
max regression classifier to perform intrusion detection. The
method achieves higher accuracy than previous models on
the NSL-KDD dataset but considers only binary classification,
differentiating between normal and anomalous traffic.
As the available computational power has increased, recent

methods based on AEs have also considered Stacked AEs
(SAEs) [91], which consist of several AEs trained separately
and then “stacked” to obtain a deeper model and a more
discriminant representation. The method proposed in [92] uses
a model based on an SAE to preprocess raw traffic data
in the CTU-13 dataset. Similarly, the method proposed in
[93] uses an SAE to process traffic data captured from home
wireless networks, representing several types of DDoS attacks.
To improve the detection accuracy, the method introduced in
[94] combines an SAE with a random forest classifier. The
method has been tested on the KDD99 and NSL-KDD datasets
by reducing the feature dimensionality of the input data and
performing five-class classification. The method achieves high
overall detection accuracy but exhibits low accuracy in detect-
ing U2R and R2L attacks. Similarly, the method described in
[95] achieves high detection accuracy on the KDD99 dataset
based on a combination of four AEs. Instead of using a random
forest classifier, the method presented in [96] combines SAEs
with a radial basis function classifier to achieve high detection
accuracy on the AWID2018 dataset.
Recently, one of the most commonly used types of AE

models has been Variational AEs (VAEs) [97]. Their main
novelty is that, whereas AEs use a deterministic discriminative
model, VAEs use a probabilistic generative model to recon-
struct the input data. As a consequence, VAEs are less prone
to overfitting than AEs are. In the field of intrusion detection,

Fig. 3. Example of a convolutional neural network (CNN). The layers perform
subsequent processing by convolving the data with banks of filters.

the method described in [98] combines VAEs with a gradient-
based fingerprinting detection model. In this method, gradient-
based fingerprints are first extracted from NetFlow data taken
from the UGR16 dataset [99], and VAEs are then applied
for feature reduction. The work reported in [100] presents
a more comprehensive evaluation conducted by combining
VAEs with several classifiers, such as naive Bayes, SVM,
decision tree, and random forest classifiers. This method
achieves good results on the NSL-KDD and UNSW-NB15
datasets, especially when using the decision tree and random
forest classifiers.
Despite the ability of AE-based methods to automatically

obtain a compact and discriminant feature representation that
can be adapted to the input data, AEs have the drawback of re-
quiring an additional ML model to perform classification based
on the obtained feature representation. To compensate for this
drawback, the use of CNNs is increasingly being considered in
recent DL-based methods developed for IDSs. This is because
CNNs can be trained to process input data to automatically
learn a compact and discriminant representation [15] while
simultaneously classifying the obtained representation into the
corresponding attack types [21].

C. Convolutional Neural Networks (CNNs)

CNNs are a type of ANN in which the layers are structured
to process input data in the form of multidimensional signals
such as images or three-dimensional volumes. The different
layers in a CNN perform subsequent processing by convolving
the data with banks of filters, with parameters typically learned
via gradient descent. CNNs have the main advantage of
performing classification while automatically learning data
representations, without the need for a handcrafted feature
extraction step [74], [101]. Due to this advantage, CNNs have
been successfully applied in several scenarios [15], [102]–
[105]. Fig. 3 shows an example of a CNN.
In addition to their advantage of automatically learning

data representations, CNNs have been especially successful in
processing data with the aim of learning discriminant spatial
patterns among the features that are invariant to translation and
shifting [101]. In the context of IDSs, the advantages of CNNs
have been useful for classifying attack types by considering
the relationships among the features while requiring minimal
preprocessing of the data [21].
Recently, however, the vast majority of CNN architectures

have been structured to process data in the form of images
[15]. Therefore, to use a CNN for intrusion detection, a prepro-
cessing step must be performed to transform the features into
a two-dimensional format that can be processed by the CNN.
Several methods have been proposed for transforming features
into a two-dimensional format. For example, the preprocessing

IEEE SYSTEMS JOURNAL 10

method proposed in [106] converts feature attributes into
binary vectors. The method converts symbolic attributes, such
as flag, service, and protocol type attributes, into binary vectors
using one-hot encoding [107]. Then, continuous attributes are
converted by performing min-max normalization, discretizing
the normalized values into ten intervals, and applying one-
hot encoding. Finally, the obtained vectors are combined and
reshaped to form a two-dimensional image. Similarly, the
preprocessing approach presented in [108] converts malware
binaries into grayscale images. A malware file is first read as
a vector of 8-bit binary numbers, and each binary number is
then converted into its equivalent decimal value. Finally, the
resulting decimal vector is reshaped into a two-dimensional
grayscale image.
Recent preprocessing methods for CNN-based intrusion

detection have extended grayscale image representations to
consider multiple channels. For example, the new encoding
method proposed in [109] is designed to give equal weight to
each feature, producing a feature representation with 24 bits
for each pixel, similar to an RGB color image.
To accelerate the transformation process, some methods

involve performing feature selection before converting the
data into an image-based format. For example, in the method
described in [110], feature selection is applied via a genetic
algorithm.
After the features are transformed into an image-based

format, a CNN-based approach is applied to classify the
obtained images and perform intrusion detection. Several such
approaches have been proposed in the literature. Most of
these CNN-based methods rely on a layer structure based
on an existing architecture. In particular, several methods use
architectures based on LeNet [74], ResNet [111], GoogLeNet
[112], or VGG-16 [113]. The LeNet architecture is used in
the methods described in [114]–[118], which achieve high
detection accuracy, especially on the AWID2018 dataset [119].
Similarly, the ResNet and GoogLeNet architectures are used
in the method proposed in [106], which has been tested on the
NSL-KDD dataset after preprocessing. Although satisfactory
results are achieved on this dataset, detection rates are not
reported for each class. The VGG-16 architecture is used in
the method presented in [108], which has been applied to
the Malign Dataset and the Microsoft Malware Dataset. This
method achieves almost the same accuracy as the winner of
the Microsoft Malware Dataset Challenge [120].
In addition to methods based on existing networks, there are

some CNN-based methods for which innovative ML architec-
tures have been proposed. For example, the authors of [121]
propose a novel CNN and present its application to the KDD99
dataset. The method achieves a high classification accuracy
for five types of DoS attacks, exhibiting performance superior
to that of naive Bayes and k-NN classifiers. An innovative
architecture is also proposed in [122] based on a convolutional
AE; however, this method has been tested only on a private
dataset.
Methods based on CNNs have recently achieved high accu-

racy on several intrusion detection datasets due to their ability
to simultaneously learn a compact representation of the input
data and perform adaptive classification. However, CNNs are

Fig. 4. Example of a Long Short-Term Memory (LSTM) network. The
neurons are connected following a temporal sequence. The forget, input, and
output gates control which information is preserved in the network and passed
to the next time step.

primarily useful for learning discriminant spatial patterns from
input data, whereas they are not naturally suited for processing
data in the form of time series with the intent of learning
discriminant temporal patterns. To overcome this disadvantage,
several recent methods have considered the use of LSTM net-
works, which are specifically structured for learning temporal
patterns by processing new data while maintaining a memory
of previous samples [75].

D. Long Short-Term Memory (LSTM) Networks

An LSTM network is a type of ANN based on an RNN
in which the neurons are connected following a temporal
sequence. However, in contrast to traditional RNNs, LSTM
networks have a deeper structure of hidden neurons with the
ability to maintain a memory of previous inputs for arbitrary
intervals of time [75]. Due to this node arrangement, RNNs
and LSTM networks are often used to process data in the form
of time series [123]. Fig. 4 shows an example of an LSTM
network.
The ability of LSTM networks to process time-series data

has proven useful in the IDS context since datasets for cyberse-
curity and intrusion detection are often structured as sequences
of features evolving over time. Due to this advantage, several
intrusion detection methods in the literature are based on
LSTM networks [124]. Among these methods, the approach
proposed in [125] applies a three-layer LSTM network. It
achieves high detection accuracies on the KDD99, ADFA-LD,
and UNM datasets. Similarly, the method proposed in [126]
uses a cascade of three LSTM network modules, combined
using a voting mechanism, to achieve an increased intrusion
detection accuracy.
To exploit both the accuracy of LSTM networks in pro-

cessing time series and the capability of CNNs to extract
spatial patterns from images, recent methods have increasingly
considered combinations of LSTM and CNN architectures
for intrusion detection. For example, the method proposed
in [127] uses an LSTM network combined with a CNN
to perform multiclass detection of anomalies in the KDD99
dataset. Similarly, the approach described in [128] uses both a
CNN and a hybrid LSTM-CNN model to perform detection. In
some cases, hybrid LSTM-CNN models have been developed
based on existing architectures, such as the method developed
in [129], which relies on a CNN designed based on the LeNet
model. This method has been tested on recent databases,
including CICIDS2017 and CTU-13.
Despite the ability of LSTM networks to natively process

time-series data, the introduction of novel and advanced CNN

IEEE SYSTEMS JOURNAL 11

Fig. 5. Example of a Generative Adversarial Network (GAN), composed of
a generator, which generates data starting from a random distribution, and a
discriminator, which distinguishes real data from synthetic data. The generator
and discriminator are trained in an alternating fashion and, in most recent
architectures, have CNN-based structures.

architectures is shifting the attention of the research commu-
nity towards the use of CNNs in a wider range of application
scenarios, including the learning of temporal patterns [130].
In fact, current research trends are increasingly focusing on
CNN architectures that are deeper (e.g., ResNet) [111] or
lighter in weight (e.g., MobileNet [131]) and on computing
platforms specifically designed to accelerate the training of
such architectures [85]. Consequently, CNN-based methods
tend to outperform models based on recurrent architectures,
such as LSTM-based models, in most cases [132].

E. Generative Adversarial Networks (GANs)

GANs are DL models that can learn and mimic the dis-
tribution of input data to generate synthetic samples with a
strong resemblance to the original data. Specifically, a GAN
is structured as a combination of a generator, which generates
data starting from a random distribution, and a discriminator,
which distinguishes real data from synthetic data. The genera-
tor and discriminator are trained in an alternating fashion until
equilibrium is reached [76], [133]. In most recent applications,
the generator and discriminator of the GAN are structured as
CNNs, with the consequence that recent GANs can generate
synthetic image samples with a high degree of realism [134].
Fig. 5 shows an example of a GAN.
GANs have the main advantage of being able to learn the

distribution of the input data in an unsupervised manner, that
is, without requiring class labels. In the IDS context, this
characteristic is useful for learning the characteristics of data
distributions in specific situations (e.g., under normal condi-
tions). Due to this advantage, many recent methods developed
for IDSs use GANs trained on existing datasets to detect
anomalies, where the training data include only data captured
in specific situations. Among these methods, a CNN-based
GAN is introduced in [135] to learn the characteristics of data
captured under normal conditions. Then, the method is used to
detect anomalies by computing the distance between freshly
captured data and normal data. To achieve faster detection, an
algorithm is proposed in [136] that improves the computational
efficiency of the GAN described in [135] while achieving a
similar accuracy on the KDD99 dataset.
Despite the ability of GANs to simulate input data distribu-

tions, the synthetic data generated from the learned distribution
may be insufficiently realistic compared with the real data,
and thus, manual (e.g., visual) inspection may be required
to achieve good results. In the case of IDSs, such visual
examinations of the feature vectors could be relatively difficult

to perform compared with cases in which a GAN is used to
generate images of known objects or people.

IV. DISCUSSION

This section presents a discussion of the limitations, chal-
lenges, and research trends of the current databases and in-
trusion detection approaches for cybersecurity applications. In
particular, we will focus on the issue of dataset reliability and
on research directions regarding novel features for intrusion
detection.

A. Dataset Reliability

The recent rise in the number of ML-based approaches,
particularly those based on DL, has resulted in an increase in
the accuracy of intrusion detection that can be achieved using
state-of-the-art methodologies. However, the performance of
DL-based methods strongly depends on the quantity and
quality of the data available [15], with the consequence that the
biases and limitations of the datasets used to train the models
directly affect the reliability of the predictions.
Currently, although the majority of works focus on research-

ing algorithms that can yield improved detection results, a
few studies have been dedicated to evaluating the reliability of
benchmark datasets. As a first step towards evaluating dataset
reliability, the work proposed in [137] discusses the criteria
for a reliable benchmark dataset, which concern the diversity
of the traffic data, the diversity of the protocols, the volume
of collected data, the diversity of the attacks considered, the
inclusion of novel attack types, the inclusion of full payloads
without anonymization, the presence or absence of informative
features, the updatability, the consideration of realistic traffic,
the extent of labeling, and the size of the feature set. Finally,
any discussion of dataset reliability should consider the ability
of a dataset to adapt to changes over time, for example,
by mimicking statistically normal traffic in accordance with
upcoming needs.
Similarly, the work described in [54] proposes eleven cri-

teria for assessing the reliability of a dataset for intrusion
detection: i) attack diversity, ii) anonymity, iii) available
protocols, iv) complete capture (with payloads), v) complete
interaction, vi) complete network configuration, vii) complete
traffic, viii) feature set, ix) heterogeneity (all network traffic
and system logs), x) correct labeling, and xi) metadata (full
documentation of data collection). In addition to complying
with these criteria, a reliable dataset should also provide a
means of anonymizing the payload information to guarantee
users’ privacy [9].
Among the criteria considered in [54], [137], attack and

traffic diversity play a major role, since a limited diversity or
a high imbalance among attack types might increase the bias
of detection approaches towards specific situations. To limit
the problem of model bias and enable accurate evaluation of
detection algorithms, it is therefore crucial to consider datasets
that are as free as possible from internal biases while also
being sufficiently representative of real-world data. However,
dataset bias has been considered mainly for the benchmark
datasets used in the field of computer vision [138], [139],
whereas there is no analysis in the literature of the bias
of benchmark datasets for intrusion detection. Therefore, an

IEEE SYSTEMS JOURNAL 12

evaluation of dataset bias for IDSs may contribute to a fairer
assessment of the various algorithms that have been proposed
in the field of cybersecurity.
In addition to dataset bias, a few works in the literature

address other issues related to public benchmark datasets, such
as repeated data, missing values, incorrect labeling [137], or an
optimistic number of false alarms due to considering specific
situations in a nonrealistic way [140].

B. Novel Features

As the number of methodologies that are able to achieve
high accuracy on known datasets increases, attack patterns
tend to evolve to better cheat the existing IDSs. This evolution,
which can arise in nonstationary environments, is known as
concept shift and occurs as the definitions of attacks change
over time [141].
For instance, the work presented in [142] shows that some

low-frequency DDoS attacks that appear in newer datasets
exhibit a higher degree of similarity to normal data traffic
than do similar attacks in older datasets. As a consequence, in
recent cases, some features are less effective in detecting such
attacks than they are in detecting older attack patterns.
Therefore, it remains an open research issue to investigate

whether the available features in known benchmark datasets
are sufficient to achieve high detection rates even in the
presence of changing attack patterns or whether it will be
necessary to add new features to maintain a high level of
detection accuracy.

V. CONCLUSION

In this review, we have analyzed Machine Learning (ML)-
based approaches to cybersecurity and intrusion detection sys-
tems, with a specific focus on the most recent methods based
on Deep Learning (DL), which represent the current state of
the art for intrusion detection in network traffic. Specifically,
we have considered methods based on deep belief networks,
autoencoders, convolutional neural networks, long short-term
memory networks, and generative adversarial networks. In
contrast to previous surveys, this review considers studies that
use common benchmark datasets to ensure a fair evaluation
and comparison of the proposed algorithms.
To provide a reference for how recent cybersecurity methods

use benchmark datasets for intrusion detection, in this survey,
we have also reviewed the main datasets used for this purpose
by highlighting their potential for training effective ML-
based algorithms. In particular, we have considered the data
collection procedures, the distributions of feature and attack
types, and dataset reliability criteria.
By providing a survey of ML and DL approaches, along

with descriptions of the benchmark datasets considered when
developing recent methods, this review aims to provide a
practical road map for researchers in academia and industry
working in the field of ML and DL for cybersecurity applica-
tions.

REFERENCES

[1] S. Muggleton, “Alan Turing and the development of artificial intelli-
gence,” AI Commun., vol. 27, no. 1, pp. 3–10, 2014.

[2] “WannaCry ransomware attack,” https://en.wikipedia.org/wiki/
WannaCry_ransomware_attack.

[3] “Hacked consumers don’t forgive companies who lose their
data. bad news for yahoo,” https://secludit.com/en/blog/
consumer-hacking-confidence.

[4] McAfee, “Mcafee labs threats report,” https://www.mcafee.com/
enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf,
2019.

[5] R. Bhadoria, “Security architecture for cloud computing,” in Cyber Se-
curity and Threats: Concepts, Methodologies, Tools, and Applications,
2018, pp. 729–755.

[6] M. Swarnkar and R. Bhadoria, “Security aspects in utility computing,”
in Emerging Research Surrounding Power Consumption and Perfor-
mance Issues in Utility Computing, 2016, pp. 262–275.

[7] S. Dorbala and R. Bhadoria, “Analysis for security attacks in cyber-
physical systems,” in Cyber-Physical Systems: A Computational Per-
spective, 2015, pp. 395–414.

[8] S. K. Khaitan and J. D. McCalley, “Design techniques and applications
of cyberphysical systems: A survey,” IEEE Syst. J., vol. 9, no. 2, pp.
350–365, 2015.

[9] R. Sandhu and P. Samarati, “Authentication, access control and intru-
sion detection,” in CRC Handbook of Computer Science and Engineer-
ing. CRC Press Inc., 1997, pp. 1929–1948.

[10] S. Han, M. Xie, H. Chen, and Y. Ling, “Intrusion detection in cyber-
physical systems: Techniques and challenges,” IEEE Syst. J., vol. 8,
no. 4, pp. 1052–1062, 2014.

[11] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 2008.

[12] R. Donida Labati, A. Genovese, V. Piuri, F. Scotti, and S. Vishwakarma,
“Computational intelligence in cloud computing,” in Recent Advances
in Intelligent Engineering: Volume Dedicated to Imre J. Rudas’ Sev-
entieth Birthday. Springer, 2020, pp. 111–127.

[13] Y. Cai, A. Genovese, V. Piuri, F. Scotti, and M. Siegel, “IoT-based
architectures for sensing and local data processing in ambient intelli-
gence: Research and industrial trends,” in Proc. of I2MTC, 2019.

[14] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art Deep Learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455, 2017.

[15] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-
L. Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep learning:
Algorithms, techniques, and applications,” ACM Comput. Surv., vol. 51,
no. 5, 2018.

[16] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: Methods, systems and tools,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 303–336, 2014.

[17] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Com-
mun. Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2016.

[18] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp.
686–728, 2019.

[19] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey
of Deep Learning-based network anomaly detection,” Cluster Comput.,
vol. 22, pp. 949–961, 2017.

[20] E. Hodo, X. J. A. Bellekens, A. W. Hamilton, C. Tachtatzis, and R. C.
Atkinson, “Shallow and Deep networks intrusion detection system: A
taxonomy and survey,” ArXiv, vol. abs/1701.02145, 2017.

[21] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine learning and Deep Learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018.

[22] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. C.
Atkinson, and X. J. A. Bellekens, “A taxonomy and survey of intrusion
detection system design techniques, network threats and datasets,”
CoRR, vol. abs/1806.03517, 2018.

[23] A. Praseed and P. S. Thilagam, “DDoS attacks at the application
layer: Challenges and research perspectives for safeguarding web
applications,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 661–
685, 2019.

[24] B. B. Zarpelo, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in Internet of Things,” J. Netw. Comput.
Appl., vol. 84, no. C, pp. 25–37, 2017.

[25] C. Tsai, C. Lai, M. Chiang, and L. T. Yang, “Data mining for internet
of things: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp.
77–97, 2014.

[26] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From intrusion de-
tection to attacker attribution: A comprehensive survey of unsupervised
methods,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, 2018.

IEEE SYSTEMS JOURNAL 13

[27] R. Abdulhammed, M. Faezipour, and K. M. Elleithy, “Network intru-
sion detection using hardware techniques: A review,” in Proc. of LISAT,
2016, pp. 1–7.

[28] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and
J. Twycross, “Immune system approaches to intrusion detection – a
review,” Nat. Comput., vol. 6, no. 4, pp. 413–466, 2007.

[29] A. Volkova, M. Niedermeier, R. Basmadjian, and H. de Meer, “Security
challenges in control network protocols: A survey,” IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 619–639, 2019.

[30] O. Savas and J. Deng, Big Data Analytics in Cybersecurity. Auerbach
Publications, 2017.

[31] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar,
“Towards the deployment of machine learning solutions in network
traffic classification: A systematic survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1988–2014, 2019.

[32] “LibPCAP,” https://www.tcpdump.org.
[33] “WinPCAP,” https://www.winpcap.org.
[34] “Snort,” https://www.snort.org.
[35] “Wireshark,” https://www.wireshark.org.
[36] “tshark,” https://www.wireshark.org/docs/man-pages/tshark.html.
[37] “TCPDump,” https://www.tcpdump.org.
[38] “Networkminer,” https://www.netresec.com/?page=NetworkMiner.
[39] “Rapidminer,” https://rapidminer.com.
[40] “Scapy,” https://scapy.net.
[41] “Cisco Netflow,” https://www.cisco.com/c/en/us/products/

ios-nx-os-software/ios-netflow/index.html.
[42] “Nfdump,” https://github.com/phaag/nfdump.
[43] D. Jurafsky and J. H. Martin, Speech and Language Processing: An

Introduction to Natural Language Processing, Computational Linguis-
tics, and Speech Recognition, 1st ed. Prentice Hall PTR, 2000.

[44] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to
data analysis with NetFlow and IPFIX,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 4, pp. 2037–2064, 2014.

[45] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proc. of CISDA, 2009.

[46] X. Jing, Z. Yan, and W. Pedrycz, “Security data collection and data
analytics in the internet: A survey,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 586–618, 2019.

[47] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web
vulnerability scanning tools for SQL Injection and XSS attacks,” in
Proc. of PRDC), 2007, pp. 365–372.

[48] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A
survey,” Managing Cyber Threats, vol. 5, pp. 19–78, 2005.

[49] University of the Aegean, “AWID2018 dataset,” http://icsdweb.aegean.
gr/awid/features.html, 2018.

[50] Canadian Institute for Cybersecurity, “Intrusion Detection Evalua-
tion Dataset (CICIDS2017),” https://www.unb.ca/cic/datasets/ids-2017.
html, 2017.

[51] University of California, Irvine (UCI), “KDD Cup 1999,” http://www.
kdd.org/kdd-cup/view/kdd-cup-1999, 1999.

[52] Kyoto University, “Traffic Data from Kyoto University’s Honeypots,”
http://www.takakura.com/Kyoto_data, 2015.

[53] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems,” in Proc. of MilCIS, 2015.

[54] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. of ICISSP, 2018.

[55] Massachussets Institute of Technology, “1998 DARPA Intrusion
Detection Evaluation Dataset,” https://www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset, 1998.

[56] B. Sangster, T. J. O’Connor, T. Cook, R. Fanelli, E. Dean, W. J. Adams,
C. Morrell, and G. Conti, “Toward instrumenting network warfare
competitions to generate labeled datasets,” in Proc. of CSET, 2009.

[57] Canadian Institute for Cybersecurity, “Intrusion Detection Evalu-
ation Dataset (ISCXIDS2012),” https://www.unb.ca/cic/datasets/ids.
html, 2012.

[58] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, 2012.

[59] Canadian Institute for Cybersecurity, “DoS dataset (CIC DoS dataset
2017),” https://www.unb.ca/cic/datasets/dos-dataset.html, 2017.

[60] ALDAPA, “Gure-Kddcup dataset,” http://www.sc.ehu.es/acwaldap/
gureKddcup, 2008.

[61] I. Perona, I. Gurrutxaga, O. Arbelaitz, J. I. Martín, J. Muguerza,
and J. M. Pérez, “Service-independent payload analysis to improve
intrusion detection in network traffic,” in Proc. of AusDM, 2008.

[62] National Security Agency, “Cyber Defense Exercise (CDX),” https:
//apps.nsa.gov/iaarchive/programs/cyber-defense-exercise/index.cfm,
2001.

[63] I. Homoliak, M. Barabas, P. Chmelar, M. Drozd, and P. Hanacek,
“ASNM: Advanced security network metrics for attack vector descrip-
tion,” in Proc. of SAM, 2013.

[64] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace
anonymization,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp.
29–38, 2006.

[65] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix,
and P. Hakimian, “Detecting P2P botnets through network behavior
analysis and machine learning,” in Proc. of PST, 2011, pp. 174–180.

[66] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proc. of CoNEXT, 2010.

[67] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical com-
parison of botnet detection methods,” Comput. Secur., vol. 45, 2014.

[68] University of Massachusetts Amherst - Laboratory for Advanced Soft-
ware Systems, “UMassTraceRepository,” http://traces.cs.umass.edu/
index.php/Network/Network, 2018.

[69] A. Sperotto, R. Sadre, F. van Vliet, and A. Pras, “A labeled data set
for flow-based intrusion detection,” in IP Operations and Management,
ser. Lect. Notes in Comput. Sc. Springer, 2009, pp. 39–50.

[70] Center for Applied Internet Data Analysis, “Data Collection, Curation
and Sharing,” https://www.caida.org/data/, 2018.

[71] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to
retire the KDD collection,” in Proc. of WCNC), 2013, pp. 4487–4492.

[72] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Proc.
of AISTATS, 2009, pp. 448–455.

[73] I. Goodfellow, Y. Bengio, and A. Courville, “Autoencoders,” in Deep
Learning. MIT Press, 2016.

[74] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[75] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[76] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proc. of NIPS, 2014, p. 2672–2680.

[77] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, p. 1771–1800, 2002.

[78] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, 2006.

[79] M. A. Salama, H. Eid, R. Ramadan, A. Darwish, and A. E. Hassanien,
“Hybrid intelligent intrusion detection scheme,” Adv. Intell. Soft Com-
put., vol. 96, pp. 295–302, 2011.

[80] G. Zhao, C. Zhang, and L. Zheng, “Intrusion detection using Deep
Belief Network and probabilistic neural network,” in Proc. of CSE,
vol. 1, 2017, pp. 639–642.

[81] N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion detection model
based on Deep Belief Networks,” in Proc. of CBD, 2014, pp. 247–252.

[82] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using
Deep Belief Networks,” in Proc. of NAECON, 2015, pp. 339–344.

[83] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion
detection system based on Deep Learning,” in Proc. of ICMLA, 2016,
pp. 195–200.

[84] E. R. Merino, F. M. Castrillejo, J. D. Pin, and D. B. Prats, “Weighted
contrastive divergence,” CoRR, vol. abs/1801.02567, 2018.

[85] NVIDIA, “CUDA,” https://developer.nvidia.com/cuda-zone, 2020.
[86] B. Abolhasanzadeh, “Nonlinear dimensionality reduction for intrusion

detection using Auto-Encoder bottleneck features,” in Proc. of IKT,
2015, pp. 1–5.

[87] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,”
in Proc. of IJCNN, 2017, pp. 3854–3861.

[88] V. L. Cao, M. Nicolau, and J. McDermott, “A Hybrid Autoencoder and
density estimation model for anomaly detection,” in Proc. of PPSN,
2016, pp. 717–726.

[89] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. ki Cho,
and H. Chen, “Deep Autoencoding Gaussian Mixture Model for
unsupervised anomaly detection,” in Proc. of ICLR, 2018.

[90] A. Y. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A Deep Learning
approach for network intrusion detection system,” in Proc. of BICT,
2015.

IEEE SYSTEMS JOURNAL 14

[91] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, p. 3371–3408, 2010.

[92] Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through
stacking dilated Convolutional Autoencoders,” Secur. Commun. Netw.,
vol. 2017, pp. 1–10, 2017.

[93] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning based DDoS
detection system in software-defined networking (sdn),” EAI Endorsed
Trans. on Security and Safety, vol. 4, no. 12, 2017.

[94] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A Deep Learning
approach to network intrusion detection,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 2, no. 1, pp. 41–50, 2018.

[95] F. Farahnakian and J. Heikkonen, “A Deep Auto-Encoder based ap-
proach for intrusion detection system,” in Proc. of ICACT, 2018.

[96] L. R. Parker, P. D. Yoo, T. A. Asyhari, L. Chermak, Y. Jhi, and K. Taha,
“DEMISe: Interpretable Deep extraction and mutual information selec-
tion techniques for IoT intrusion detection,” in Proc. of ARES, 2019,
pp. 98:1–98:10.

[97] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Proc. of ICLR, 2014.

[98] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C.
Chan, “GEE: A gradient-based explainable Variational Autoencoder for
network anomaly detection,” in Proc. of CNS, 2019, pp. 91–99.

[99] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-
Teodoro, and R. Therón, “UGR’16: A new dataset for the evaluation of
cyclostationarity-based network IDSs,” Computers & Security, vol. 73,
pp. 411–424, 2018.

[100] L. Vu, V. L. Cao, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and
E. Dutkiewicz, “Learning latent distribution for distinguishing network
traffic in intrusion detection system,” in Proc. of ICC, 2019, pp. 1–6.

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60,
no. 6, p. 84–90, 2017.

[102] A. Genovese, V. Piuri, K. N. Plataniotis, and F. Scotti, “PalmNet:
Gabor-PCA Convolutional Networks for touchless palmprint recogni-
tion,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 2, 2019.

[103] R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri, and F. Scotti,
“A novel pore extraction method for heterogeneous fingerprint images
using Convolutional Neural Networks,” Pattern Recognit. Lett., vol.
113, no. 1, pp. 58–66, 2018.

[104] A. Genovese, V. Piuri, F. Scotti, and S. Vishwakarma, “Touchless
palmprint and finger texture recognition: A Deep Learning fusion
approach,” in Proc. of CIVEMSA, 2019.

[105] R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri, and F. Scotti, “Ap-
plications of computational intelligence in industrial and environmental
scenarios,” in Learning Systems: from Theory to Practice. Springer,
2018, vol. 756, pp. 29–46.

[106] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection using
Convolutional Neural Networks for representation learning,” in Neural
Information Processing. Springer, 2017, pp. 858–866.

[107] “One-hot encoding,” https://www.sciencedirect.com/topics/
computer-science/one-hot-encoding, 2020.

[108] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang,
and F. Iqbal, “Malware classification with Deep Convolutional Neural
Networks,” in Proc. of NTMS, 2018, pp. 1–5.

[109] T. Kim, S. C. Suh, H. Kim, J. Kim, and J. Kim, “An encoding technique
for CNN-based network anomaly detection,” in Proc. of Big Data,
2018, pp. 2960–2965.

[110] R. Blanco, P. Malagón, J. J. Cilla, and J. M. Moya, “Multiclass network
attack classifier using CNN tuned with genetic algorithms,” in Proc. of
PATMOS, 2018, pp. 177–182.

[111] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, 2016, pp. 770–778.

[112] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. of CVPR, 2015.

[113] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. of ICLR, 2015.

[114] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for a
massive network using Convolutional Neural Networks,” IEEE Access,
vol. 6, pp. 50 850–50 859, 2018.

[115] U. Çekmez, Z. Erdem, A. G. Yavuz, O. K. Sahingoz, and A. Buldu,
“Network anomaly detection with Deep Learning,” in Proc. of SIU,
2018, pp. 1–4.

[116] M. Ito and H. Iyatomi, “Web application firewall using character-level
Convolutional Neural Network,” in Proc. of CSPA, 2018, pp. 103–106.

[117] S. Z. Lin, Y. Shi, and Z. Xue, “Character-level intrusion detection based
on Convolutional Neural Networks,” in Proc. of IJCNN, 2018, pp. 1–8.

[118] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion detection model
based on feature reduction and Convolutional Neural Networks,” IEEE
Access, vol. 7, pp. 42 210–42 219, 2019.

[119] G. Feng, B. Li, M. Yang, and Z. Yan, “V-CNN: Data visualizing based
Convolutional Neural Network,” in Proc. of ICSPCC, 2018, pp. 1–6.

[120] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Mi-
crosoft malware classification challenge,” CoRR, vol. abs/1802.10135,
2018.

[121] S.-N. Nguyen, V.-Q. Nguyen, J. Choi, and K. Kim, “Design and
implementation of intrusion detection system using Convolutional
Neural Network for DoS detection,” in Proc. of ICMLSC, 2018.

[122] S. Park, M. Kim, and S. Lee, “Anomaly detection for HTTP using
Convolutional Autoencoders,” IEEE Access, vol. 6, 2018.

[123] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, M. Steinbrecher,
F. Klawonn, and C. Moewes, Computational Intelligence: A Method-
ological Introduction, 2nd ed. Springer, 2016.

[124] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proc. of MLCS, 2018, pp. 1–8.

[125] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “LSTM-based system-call
language modeling and robust ensemble method for designing host-
based intrusion detection systems,” ArXiv, vol. abs/1611.01726, 2016.

[126] F. Jiang, Y. Fu, B. B. Gupta, F. Lou, S. Rho, F. Meng, and Z. Tian,
“Deep Learning based multi-channel intelligent attack detection for
data security,” IEEE Trans. Sustain. Comput., pp. 1–1, 2018.

[127] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying
Convolutional Neural Network for network intrusion detection,” in
Proc. of ICACCI, 2017, pp. 1222–1228.

[128] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and
M. Zhu, “HAST-IDS: Learning hierarchical spatial-temporal features
using Deep Neural Networks to improve intrusion detection,” IEEE
Access, vol. 6, pp. 1792–1806, 2018.

[129] Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, “Network intrusion
detection: Based on Deep Hierarchical Network and original flow data,”
IEEE Access, vol. 7, pp. 37 004–37 016, 2019.

[130] M. Elbayad, L. Besacier, and J. Verbeek, “Pervasive attention: 2D
Convolutional Neural Networks for sequence-to-sequence prediction,”
CoRR, vol. abs/1808.03867, 2018.

[131] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for mobile vision applications,” CoRR,
vol. abs/1704.04861, 2017.

[132] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
vol. abs/1803.01271, 2018.

[133] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How generative adversarial
networks and their variants work: An overview,” ACM Comput. Surv.,
vol. 52, no. 1, pp. 10:1–10:43, 2019.

[134] A. Genovese, V. Piuri, and F. Scotti, “Towards explainable face aging
with Generative Adversarial Networks,” in Proc. of ICIP, 2019.

[135] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with Generative Adversar-
ial Networks to guide marker discovery,” CoRR, vol. abs/1703.05921,
2017.

[136] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
“Efficient GAN-based anomaly detection,” ArXiv, vol. abs/1802.06222,
2018.

[137] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “An
evaluation framework for intrusion detection dataset,” in Proc. of
ICISS), 2016, pp. 1–6.

[138] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proc.
of CVPR, 2011, pp. 1521–1528.

[139] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars, “A deeper
look at dataset bias,” in Domain Adaptation in Computer Vision
Applications. Springer, 2017, pp. 37–55.

[140] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, pp. 262–
294, 2000.

[141] J. G. Moreno-Torres, T. Raeder, R. Alaíz-Rodríguez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern
Recognit., vol. 45, pp. 521–530, 2012.

[142] R. F. Fouladi, T. Seifpoor, and E. Anarim, “Frequency characteristics
of DoS and DDoS attacks,” in Proc. of SIU, 2013, pp. 1–4.

