The goal of nuclear structure physics is to provide a complete understanding of the static properties of atomic nuclei, their excitation spectra, their response to external fields and their decays. While it is hard to achieve these goals within a single framework, so that there is no nuclear 'standard model', it is clear that nuclear Density Functional Theory (DFT) has probably the widest range of applicability so far. In this paper, we try to put DFT in a broader context, with frequent comparisons to electronic DFT. We also include a discussion of the relationships with ab initio methods and Effective Field Theories (EFTs) in general, as well as a short survey of the quite large number of applications. Although written with a personal and possibly biased perspective, the paper aims at fostering cross-fertilizations with other domains of science.

Nuclear density functional theory / G. Colo. - In: ADVANCES IN PHYSICS: X. - ISSN 2374-6149. - 5:1(2020). [10.1080/23746149.2020.1740061]

Nuclear density functional theory

G. Colo
Primo
2020

Abstract

The goal of nuclear structure physics is to provide a complete understanding of the static properties of atomic nuclei, their excitation spectra, their response to external fields and their decays. While it is hard to achieve these goals within a single framework, so that there is no nuclear 'standard model', it is clear that nuclear Density Functional Theory (DFT) has probably the widest range of applicability so far. In this paper, we try to put DFT in a broader context, with frequent comparisons to electronic DFT. We also include a discussion of the relationships with ab initio methods and Effective Field Theories (EFTs) in general, as well as a short survey of the quite large number of applications. Although written with a personal and possibly biased perspective, the paper aims at fostering cross-fertilizations with other domains of science.
nuclear structure; mean-field models; nuclear DFT; nuclear astrophysics;
Settore FIS/04 - Fisica Nucleare e Subnucleare
   European Nuclear Science and Application Research 2
   ENSAR2
   EUROPEAN COMMISSION
   H2020
   654002
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Nuclear density functional theory.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/731096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact