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ABSTRACT ARTICLE HISTORY

The goal of nuclear structure physics is to provide a complete Received 29 December 2019
understanding of the static properties of atomic nuclei, their Accepted 3 March 2020
excitation spectra, their response to external fields and their KEYWORDS

decays. While it is hard to.achieve these goals within a sin_gl_e Nuclear structure; mean-field
framework, so that there is no nuclear ‘standard model’, it is models; nuclear DFT; nuclear
clear that nuclear Density Functional Theory (DFT) has prob- astrophysics

ably the widest range of applicability so far. In this paper, we

try to put DFT in a broader context, with frequent compar- ;Ac: 605 2110k
isons to electronic DFT. We also include a discussion of the 917'20']3' 1.60.Jz; 21.10-k;

relationships with ab initio methods and Effective Field
Theories (EFTs) in general, as well as a short survey of the
quite large number of applications. Although written with
a personal and possibly biased perspective, the paper aims at
fostering cross-fertilizations with other domains of science.
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1. Introduction

Nuclear physics has the well-deserved reputation of being an intricate,
demanding, and sometimes painful subject in physics.

At the phenomenological level, one can start by considering the huge
variety of properties that nuclear systems display. Their existence or non-
existence is already a non-trivial property. Today we know ~ 250 stable
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nuclei, that is, given combinations of Z protons and N neutrons (that can be
arranged in a plane like in Figure 1) that have infinite lifetime. Other
combinations can be bound and yet decay into other forms on a very long
or very short timescale; very short-lived nuclei are hard to detect experimen-
tally but we are experiencing a continuous progress in this respect, as testified
by the fact that 3302 stable and unstable nuclei have been reported to exist at
the end of 2018 [1], and that 13 nuclei/year have been discovered on average
in the years 2103-2016 and 34 in 2017 [2]. Thus, we can affirm that the
nuclear landscape is changing continuously.

Nuclei are described, still, in many introductory courses [3,4] as liquid
drops. Their binding energy BE is defined as

BE(N,Z) = M(N,Z)¢ — Zm,c® — Nm,c*, (1)

where the nuclear mass M and the proton and neutron masses 1, and m,
are introduced. For typical medium-heavy nuclei of mass number
A = N + Z, the binding energy per nucleon BE/A is ~ 8 MeV. This
value is small with respect to m, or m,: in other words, the mass of the
nucleus is mainly due to the mass of the constituents." The fact that the
binding energy per nucleon in standard nuclei is pretty constant tells us that
each nucleon interacts with nearest neighbours and the number of interac-
tions is not proportional to the number of nucleon pairs A(A — 1), but
simply to A. This is called ‘saturation’ of the nuclear force.?

Saturation produces stable nuclei that have an inner density p (sum of
proton and neutron densities, p, and p,) which is also pretty constant. This

so-called saturation density is p, & 0.16 fm~>. In such conditions, the average
distance between nucleons is somewhat larger than the range of the nuclear
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Figure 1. The nuclear chart [i.e. the (N, Z) plane] is shown together with some predictions of
the proton and neutron drip lines. The drip lines correspond to the limits of nuclear existence,
and their precise definition can be found around Equation (3) and (4) below. These predictions
have been drawn by using the tools available at the URL http://massexplorer.frib.msu.edu/
content/Plotting_Tools.html and including results from all the models. On the right side, the
extrapolation from finite nuclei to neutron stars is shown. As briefly mentioned in the main text,
neutron stars are essentially systems of ~ 10°°~¢ neutrons that are bound by gravity.
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force. This is mainly an effect of Pauli principle correlations. The nucleon
mean free path in the nucleus has been found (see, e.g. Figure 7 of [5]) to be
larger than the nuclear radius, that is,

R = rpA'?, )

with 7y ~ 1.2 fm. It must be noted that this large value of the nucleon mean free
path is consistent with the well-known fact that, to a first approximation, nuclei can
be described in terms of nucleons that move independently in an average potential.
In fact, nuclei display a clear shell structure characterised by neutron and proton
orbitals; closed-shell nuclei are known as magic nuclei. We may be tempted, then, to
estimate the typical kinetic energy of nucleons at saturation density by using the
Fermi gas formula, and we obtain ~ 35 MeV. From this value and the value of the
mean free path, we can also infer that the time between two successive nuclear
interactions is at least of the order of 10~% s. We shall use this estimate below.
The picture of independent nucleons in a spherical average potential is
a first and rough one. Quadrupole and pairing correlations play important
roles in atomic nuclei. Away from closed neutron and proton shells, it is
known since the early days of nuclear physics [6] that many nuclei are
conveniently described by assuming a quadrupole-deformed intrinsic shape
in which nucleons are confined, and that undergoes rotational motion with
respect to the laboratory frame.” Evidences of nuclei with octupole defor-
mation (i.e. pear-like shapes) are more recent [7]. The quest for more exotic
shapes is still ongoing [8]. Non-spherical shapes arise because many nuclei
gain energy when nucleons are placed in the orbitals associated with such
shapes and are also favoured by nucleon-nucleon (in particular, proton-
neutron [6,9]) correlations. An example is shown in Figure 2. Pairing
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Figure 2. (Left) Total energy of 2*Mg, calculated using one of the models already employed to
draw the left panel of Figure 1, as a function of the quadrupole deformation parameter

=3 \/20, where & is the relative difference between the major and minor semi-axis of the
ellipsoid. (Right) Total ground-state density (in fm—3) as a function of cylindrical coordinates r, z
(z is along the symmetry axis of the ellipsoid).
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correlations are responsible for the fact that nucleons outside closed shells
exhibit, as a rule, a superfluid behaviour; at the same time, we have to add
that several (and by far not all explored yet) superfluid phases exist in
nuclear and neutron matter [10-12], in analogy with the case of electronic
superconductors. We shall relate, in Sec. 3, deformation and pairing to
spontaneous symmetry breaking.

Although 8 MeV of binding energy per nucleon is a typical value, nuclei
can become weakly bound. As we mentioned at the start of the manuscript,
we still do not know all nuclei that exist in nature. The limit of nuclear
existence is reached when hitting the so-called drip lines. The proton and
neutron drip lines correspond, more precisely, to the loci where the separa-
tion energy S for that kind of particle, defined by

S, =BE(N,Z) — BE(N,Z — 1), 3)
and by
S,=BE(N,Z) — BE(N — 1,2), (4)

changes its sign [the binding energies BE are defined in Equation (1)]. The
lines depicted in Figure 1 are obtained by using some of the theoretical
models that will be discussed below. Our current uncertainties on the drip
lines are nicely discussed in Refs [13,14]. The neutron (proton) drip lines are
reached by increasing (decreasing) the number of neutrons with respect to
the typical values for stable nuclei, that are those which maximise the
binding energy (1).

Protons and neutrons can be seen as two states of the same particle with
different z-projections of the so-called isospin. The strong interaction com-
mutes with isospin, that is, preserves isospin symmetry; nonetheless, this
interaction is isospin-dependent and stronger among protons and neutrons,
than among particles of the same kind. This difference is also larger than the
effect of the Coulomb interaction, that breaks isospin symmetry. We now
briefly discuss some consequences of these facts.

The Coulomb repulsion prevents medium-heavy nuclei from having
substantial proton excess; nuclei close to the proton drip line are ‘neutron
deficient’, in the sense that they have less neutrons than stable nuclei in the
same mass region. On the other hand, nuclei with substantial neutron excess
exist, and the neutron drip line extends much further apart from the stable
nuclei than the proton drip line. Due to the strong proton-neutron compo-
nent of the nuclear force, nuclei close to the proton drip line display strongly
bound neutron orbitals and proton orbitals close to the continuum; for the
very same reason, close to the neutron drip line one expects strongly bound
proton orbitals and neutron orbitals close to the continuum. Moreover, in
this latter case, when neutron binding is weak and the angular momenta of
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the last neutrons are small, the wave functions are not limited by the
centrifugal barrier and extend far from the nucleus, giving rise to regions
where the density is smaller than the typical saturation density p,. These
regions form a so-called neutron ‘skin” or ‘halo’ of dilute neutron matter.
‘Exotic’ nuclei with skin or halo are of great interest for a number of reasons.
Their diffuse surface may change the sequence of the nucleon orbitals and
even the magic numbers [15], and the excitation modes of exotic nuclei may
be different from the well-known modes in standard nuclei [16].

Low-density neutron matter can become quite different from ordinary
nuclear matter. In fact, very dilute neutron matter is expected to be the
prototype of a universal system, the so-called unitary gas. To understand
this point, we remind that, in a gas of particles, the low-energy elastic cross
section can be written as [17]

4

=1 @ (5)

o

where a is the s-wave scattering length and k is the relative momentum. One
usually identifies a ‘natural’ case in which the relative momentum k can be

close to zero and k < |a| ™', so that the cross section is ¢ = 47a®. The
neutron-neutron scattering length is ‘unnaturally’ large, a = —18.7 fm

1/3

[18]. Since in a uniform system krz~p'/°, there exist finite, observable values

of the density for which |a| " < k and one reaches the so-called unitary
limit,* in which the cross section attains the value o = %Z, which is inde-
pendent of the system under study. Other many-body systems may be close
to the unitary limit. In fact, it has been suggested recently that cold atoms
may explore the whole regime from unitarity to naturalness, and that close
to unitarity measurements in cold atoms may actually also provide the
neutron matter equation of state (EoS) [19,20].

A recent review about neutron matter from low to high density can be
found in Ref [21]. In fact, the properties of high-density nuclear matter are
even far less known. The interest in these extreme conditions stems from the
fact that, as the right part of Figure 1 hints, neutron matter does exist in
nature: neutron stars [22,23] contain mainly neutrons, with just enough
protons and electrons so that the system is globally neutral and in thermo-
dynamical equilibrium with respect to weak processes. Neutron stars can be
bound due to gravity (cf. the pedagogical exercise at p. 226 of [3]): the so-
called Tolman-Oppenheimer-Volkov (TOV) equation assumes that neu-
tron stars are spherical, and that each spherical shell is in hydrostatic
equilibrium as a result from the balance between the gravitational attraction
and the nuclear repulsion (that arises since the inner shell has larger density
p than the outer shell and, thus, the pressure P from inside is larger than the
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pressure from outside). The TOV equation can be solved if a nuclear model
provides the EoS in terms of the function P(p).

Terrestrial nuclei only inform us about the properties of nuclear matter
close to p = p,, and with a number of neutrons that does not exceed too
much the number of protons. Then, extrapolations to neutron star matter
are plagued by huge uncertainties. At the surface of the star (the outer crust,
at very low density) bound nuclei immersed in an electron gas are the
obvious stable form that minimises the energy, but the transitions that
take place as the density increases are not well known. There is consensus
that, qualitatively, one should move to bound nuclei surrounded by free
neutrons (in the so-called inner crust) and then to various forms of clus-
terised neutron matter, before reaching the uniform neutron matter phase
around p, in the outer core. In the so-called inner core, namely for densities
larger than p,, the formation of new particles, like hyperons,” can be
considered natural in keeping with the fact that the energy density allows
such creation. Nobody knows, at present, how large the density can be at the
centre of the star, and if a gas of deconfined quarks can be formed or not. See
Figures 1 and 3 in keeping with this description of the layers of a neutron
star.

In summary, the constituents of atomic nuclei, protons and neutrons, can
live in very different conditions of total density, p, and asymmetry,

B= (pn - pp) /p. This gives rise to an extremely rich host of phenomena,

in terms of overall shapes of the bound systems that are formed, shell
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Figure 3. Graphical representation of the different layers of a neutron star. The figure is adapted
from Ref [77], where a description of the precise models behind this representation is provided.
From the scale on the right side, it is clear that phases similar to the halo of exotic nuclei or to
dilute nuclear matter are encountered.
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structure, energetics, etc. The exploration, and possibly the design, of
properties of matter at this scale (fm and MeV) is not less rich and is
definitely more challenging than doing the same at the electronic, nano-
metric, or mesoscopic scale. Some of the differences and analogies with
molecules or cold atoms have been briefly mentioned above.

Actually, we have only so far addressed the phenomenology of ground states.
As energy and angular momentum are given to nuclei, one can explore an even
richer world of complex spectra, nuclear reactions and transitions. Nuclei can
respond to three of the four elementary forces (strong, electromagnetic and
weak) and be laboratories to test their properties, namely, they can absorb and
emit electromagnetic radiation, scatter or absorb leptons as well as undergo f3-
decay, scatter and emit nucleons or other hadrons.

The lowest excited state can be as low as 7.6 eV (in Th) or as large as
6 MeV (in '°0). Low-lying collective rotations, that is, states in which
a deformed nucleus rotates as a whole, are characterised by slow times
(1072° — 107 s) as compared with those of successive nuclear collisions
(10722 s as we discussed above). As a consequence, a kind of Born-
Oppenheimer factorization can be applied to separate the collective motion
from that of the single nucleons. As the angular momentum and rotational
energy increase, nuclei undergo several transitions to exotic states before,
eventually, fissioning [3,6]. Spherical nuclei cannot rotate but have a rich
vibrational spectrum. The vibrational states have energies of the order of ~
MeV or larger; at ~ tens of MeV, highly collective motion takes place
under the form of the so-called ‘giant resonances’ [24]. Here, the separation
of scales does not take place.

All these features should make nuclear structure of interest for con-
densed matter physicists, chemists, biologists. Fostering the understand-
ing of different types of many-body systems through mutual exchanges
between different communities has been always a valuable strategy and
should not be abandoned. In this spirit, this paper is devoted to nuclear
applications of Density Functional Theory (DFT). One reason is certainly
the fact that DFT has a broader range of applicability, as we discuss in the
next Section, with respect to other theoretical approaches to nuclei. The
other reason is that within DFT an unified language can be found to
exchange ideas with scientists dealing with electronic systems. The reader
who is interested in going deeper into nuclear DFT can exploit the
excellent and recent book edited by N. Schunck [25].

2. Observables, energy scales and theories

Thinking a theorist, one of the first obvious statements is that nuclei are
hard to study because they are many-body systems and the inter-particle
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interaction is very involved. There is, anyway, a steady progress in the so-
called ab initio methods [26-28]. This wording refers to theoretical
approaches where controlled, in principle exact, many-body approximation
schemes are implemented in conjunction with an interaction between
nucleons that produces accurate results when used to solve the two-body
problem [properties of the deuteron and nucleon-nucleon (NN) scattering],
the three-body and possibly other few-body problems. It is well known that
one of the main features of the nuclear many-body problem is that three-
body forces are very relevant and many-body forces cannot be ruled out.

While electrons are, to the best of our knowledge, structureless and point-
like, and we know well the electromagnetic interaction among them, this is
not the case for nucleons. Everybody is inclined to think that the forces
among nucleons should be viewed as residual forces between systems of
bound quarks. The analogy with the Van der Waals residual forces between
complex molecules could be invoked here, but it is of no help. Non-
practitioners may ask straightforwardly “Why don’t we calculate nuclear
properties starting from the fundamental theory of strong interactions?’.
Quantum Chromo Dynamics (QCD) is the strong interaction theory in the
same manner as Quantum Electrodynamics (QED) is the fundamental
theory for electromagnetism. But at variance with QED, whose coupling
constant & = 13- is small at the energies of interest, QCD is not perturbative
at low energies as the corresponding coupling constant becomes large [29].

A non-perturbative solution for the case of baryon-baryon interactions can
in principle be obtained by means of lattice QCD calculations; however, in the
case of the NN interaction, these calculations have not yet been able to provide
reliable results (see [30] and references therein for a discussion of the difficul-
ties). Most of the ab initio practitioners have turned their attention to effective
chiral Lagrangians. These include the quantum fields associated with the
nucleons, and this feature is shared by other QFT Lagrangians that also include
effective mesons like pions or heavy ones, and their coupling with the nucleons.
However, unique aspects of chiral Lagrangians are the systematic application of
the separation of energy scales as well as, obviously, chiral symmetry.

These concepts have been introduced by S. Weinberg [31], who proposed
the equivalence between chiral Lagrangians and the QCD Lagrangian at low
energy. Low energy means here ‘low with respect to the energy scale
associated with the mass of the nucleon and of the heavy mesons’ (A, ~
GeV). If we restrict our considerations to the u and d quarks, their masses
are very light (of the order of MeV), and if they are set to zero the QCD
Lagrangian becomes invariant under chiral transformations. The fact that
this symmetry is partially kept, and partially spontaneously broken in the
QCD ground state is confirmed by the hadron spectrum (cf., e.g. the
discussion in Ref [32]). Moreover, it is known that the presence of
a continuous symmetry which is spontaneously broken dictates the
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existence of a massless boson due to the Goldstone theorem [33]. The pion
is not massless, due to the approximate nature of this symmetry, and yet its
mass ( & 100 MeV) is much smaller than those of the other mesons. In such
a situation, Weinberg’s idea is that the most general Lagrangian that
includes nucleons and pions (the light, almost massless Goldstone bosons),
and is consistent with chiral symmetry, should provide the same results as
the QCD Lagrangian, at least in the low-energy regime up to A,.

The strategy of an effective field theory (EFT) based on these ideas (in short,
chiral EFT or yEFT) consists in writing the chiral Lagrangian including nucleons
and pions. The contributions to the NN (NNN, etc. ... ) force emerge from the
set of Feynman diagrams with two (three, etc. ...) nucleon asymptotic states.
For the theory to be tractable, these diagrams must be ordered in a hierarchy
according to some perturbative parameter. The widely used choice for this

arameter is 2, where Q is the ical nucleon momentum. This choice is
A
X

not completely obvious and is debated in the literature [34]. The power v at

which the expansion in <A%> " is stopped defines lowest-order (LO), next-to-

lowest-order (NLO), etc. ... potentials. Details are discussed in [27,28,32].

The existence of a NN bound state (the deuteron) shows that this
system is not perturbative. Weinberg (see [35] and references therein)
suggested that one can obtain a sensible NN potential by applying pertur-
bation theory with (only) nucleon intermediate states. Therefore, chiral
NN potentials are constructed solving the Lippmann-Schwinger equation
on top of a LO, NLO, etc. ... formulation. It has to be noted that this
requires introducing a regulator (or ultraviolet cutoff) A that avoids
divergences. This cutoff is a parameter that should not be confused with
the energy scale A,.

Chiral NN potentials can at present be tested against the nuclear phe-
nomenology by using many-body methods that, albeit approximate, have
control on the nature and the quantitative impact of the approximations,
and can in principle be improved up to exact results, as we mentioned at the
start of this Section. These methods include Quantum Monte Carlo (QMC)
approaches [36,37], the In-Medium Similarity Renormalization Group (IM-
SRG) method [38], the Coupled Cluster (CC) approach [39], the Self-
Consistent Green’s Function Theory (SCGFT) [40], nonrelativistic and
covariant Brueckner-Hartree-Fock (BHF) theory [41], and the No-Core
Shell Model [42].

So far, the results of these ab initio approaches are sensitive to the
many-body scheme, to the order at which the chiral potential is deter-
mined (LO, NLO, etc. ...), but also to the cutoff A. This is the open issue
for researchers in this field.
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We shall quote a few paradigmatic examples along this line. As for finite
nuclei, Ref [43] highlights that chiral potentials within QMC calculations
provide results for binding energies and radii of light systems (up to '°O)
that are characterised by uncertainties related to the order truncation and to
the cutoft which is employed. The same kind of uncertainties also shows up in
QMC calculations for neutron matter [44]. IM-SRG calculations have also
clearly shown, so far, a dependence of the results in medium-heavy nuclei on
the resolution scale A used to build the Hamiltonian [45]. This is
a consequence of the difficulty in reproducing the empirical saturation point
of nuclear matter. This reproduction remains a challenge for chiral potentials,
and may require an expansion to higher order in the perturbative parameter
as it has been done so far, as the very recent many-body perturbation theory
results based on N;LO potentials seem to hint [46]. All these issues can be
looked at from a complementary point of view: the chiral potential NLOs,,
gives successful results, and at the same time it betrays the original spirit of ab
initio calculations by including data from medium-heavy nuclei in the para-
meter fit. The fit has something in common with that of nuclear Energy
Density Functionals (EDFs), that we will now discuss.

3. Nuclear DFT: differences with the case of electronic DFT

DFT is based on the fundamental theorem that has been proposed by
P. Hohenberg and W. Kohn back in 1964 [47]. The theorem asserts that,
for a system of fermions that are subject to an external potential vy, the
total energy can be written as a functional of the particle density p(¥). More
precisely,

E,[p] = (¥|H + vex|¥) = Flp] + Jd3r Vext(F)p(7). (6)

In fact, the first equality is the definition of the total energy, assuming that H is
the Hamiltonian that governs the many-fermion system, to which the external
potential is added. The theorem is related to the second equality, where the
contribution of the external potential is singled out: the functional F should be
universal, namely, it is related to the kind of fermions and not to v.,;. Equation
(6) also implies that the total functional E, displays a minimum at the exact
ground-state density, and its value is the exact ground-state energy.

It is hard to fail appreciating the asset provided by Equation (6) and the
theorem behind it. For a N-body system, one should in principle deal with
a complex function of 3N variables.® This is unmanageable except for small
N, but we have just discovered that dealing with a real function of 3 variables
is enough! In fact, as discussed in textbooks, every observable related to the
ground-state of the system can be deduced from the density alone. The
drawback comes from the fact that the proof of the HK theorem is not
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a constructive proof; in other words, it does not give any clue on how to
build the universal functional F and/or how to start from a simple ansatz
and improve it systematically.

A commonly used scheme is the one introduced by W. Kohn and L.J. Sham
[48], in which one exploits the fact that the density p(¥) can be represented in
terms of auxiliary single-particle wave functions (orbitals) ¢;(7) [49], namely

=>_ 18I (7)

The kinetic energy is then written as

r= ZJd3r¢ (——v2)¢( . )

that is, it is a functional of 7(7) = Z W([) (7)|* as one easily can realise if an
integration by parts is performed’ startmg from [8]. In the Kohn-Sham
scheme, not only the kinetic energy but also the direct Hartree energy (the
classical electrostatic interaction energy between distributed charges) is
singled out and one is left with an unknown part of the energy functional
which is dubbed exchange-correlation. In the case of Coulomb systems, the
success of this scheme is also due to the compensation of errors in the
exchange and correlation contributions.

In nuclear systems, there are a number of differences that we wish to
stress in what follows.

[1] There a historical difference. Nuclear EDFs were born as Hartree-Fock expectation
values of Hamiltonians, and gradually developed into something more similar to
a real EDF [50].

In the 1970s and 1980s, various groups have started to introduce effective
Hamiltonians H.g with the idea of using them in Hartree-Fock (HF), i.e.
mean-field calculations. In other words, the idea was to calculate the nuclear
ground-state by minimising the energy

E = (®|H|D), ©))

where |®) is the most general Slater determinant consistent with the
symmetries displayed by the system and Hes = T + Vg is a properly
designed effective Hamiltonian. In principle, an effective interaction Vg
that accounts for the short-range, mainly attractive character of the NN
interaction in the medium could work as the saturation point can result, in
this case, from the balance with the repulsive kinetic energy. In practice, the
situation is more involved. In particular, it has been soon realised that only
density-dependent interactions can provide realistic results for the properties
of atomic nuclei. This emerged from the experience of several decades, as
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reviewed in [50]. The most widely used effective interactions V(7,7’) have
been those of the Skyrme type [51-53], and those of the Gogny type [54,55].
These interactions are strongly spin- and isospin-dependent. In terms of
their radial dependence, the terms of the Gogny forces are Gaussians, while
Skyrme forces are proportional to Dirac §-functions and mimic the finite
range with a dependence on the relative momentum between the nucleons.
Both kinds of forces include ~ 10-15 terms, so this is the numbers of
parameters to be fit against a set of data. Both include at least one density-
dependent term.

Is this term avoidable or not? So far, no density-independent Hamiltonian
has the same performances of a density-dependent one. Pedagogical examples
along this line can be found in [56], and a simple yet powerful argument why
naive mean-field with a density-independent interaction cannot work for
nuclei is provided in [57]. A thorough analysis has been carried out in Ref [58].

A density-dependent Hamiltonian H.g[p] can be thought as an object that
poses conceptual problems, unless one merely considers it as a tool to generate
an EDF through Equation (9) [59]. Starting from the 1990s, a philosophical and
practical shift has taken place: existing EDFs based on effective Hamiltonians
have been conceived to be per se a realisation of nuclear DFT, and practitioners
have started to generalise their form without resorting to underlying
Hamiltonians. In the pioneering work of Ref [60], a spin-orbit term has been
introduced in the EDF without any reference to a spin-orbit potential. This idea
has been since then become the standard, and we presently should talk of
a nuclear EDF without any reference to a generating Hamiltonian.

[2] In electronic systems, the fixed ion positions constrain the position of centre-of-
mass of the whole system in the laboratory frame. In nuclei, that are self-bound
systems, this is not the case.

It has been argued by several authors [61] that the HK theorem in its
standard formulation is irrelevant to the nuclear case because it concerns
the laboratory density: as the centre-of-mass can translate, this density is
almost zero everywhere. Experiments probe actually the intrinsic density
(relative to the nuclear centre-of-mass). The solution of this puzzle can be
found, based on the fact that it has been proven [62] that, given a Hermitian
operator Q, one can build an energy functional depending on Q(7) = (Q(7))
that is universal in the HK sense and has its minimum at the correct value of
Q with the correct energy. Thus, one can replace the laboratory density with
the intrinsic density in the HK theorem [61,63,64].

[3] Symmetry breaking is one of the essential elements of nuclear DFT.

The intrinsic nuclear density can break some symmetries that character-
ise the nuclear Hamiltonian. The typical example is that of deformed nuclei,
that are so defined since the intrinsic density is non-spherical and a clear
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signature is the existence of rotational bands. However, also nuclear super-
fluidity can be cast into the framework of symmetry breaking [10]. These
aspects have been already mentioned in Sec. 1.

It is a common practice to refer to these cases as examples of spontaneous
symmetry breaking (SSB). We shall not dwell on the differences between
SSB breaking in either infinite or finite systems, as this is beyond the scope
of the paper. We just remind that in finite systems, quantum fluctuations
allow coupling symmetry-breaking states with one another and restore the
symmetry [25,65]. Indeed, in the case of the rotational symmetry, the
nucleus displays a zero-point rotational motion so that the shape in the
laboratory system is spherical (i.e. consistent with the symmetry).

The formal way to start from a symmetry-breaking solution and restore
the symmetry is to use projection methods. The operators which are intro-
duced project on the relevant quantum numbers, like angular momentum in
the case of the rotational symmetry. Superfluid nuclei are better described
by approaches, like HF-Bardeen-Cooper-Schrieffer (HF-BCS) or HF-
Bogoliubov (HFB), in which the particle number symmetry is broken and
can eventually be restored through projection. An excellent review on
projection methods can be found in Ref [66]. The aspect of symmetry
breaking and restoration as a unique feature of nuclear DFT is emphasised
in the lecture notes of Ref [67] (see, nonetheless, Ref [68]).

The issue of symmetry breaking and restoration in finite systems cannot yet
be said to be fully understood. In Ref [69], the formalism of decoherence
histories is applied to study it. Within such framework, correlations between
the particles at different times become a key issue, and one can appreciate the
fact that symmetry restoration is more important in nuclei than in molecules
because in nuclei the adiabatic approximation is less good. In simpler terms,
the rotational motion of a deformed system (that is responsible for the
symmetry restoration) is slower than the intrinsic motion® but not extremely
slower. The difference is, as a rule, larger in electronic systems.

[4] The structure of the nuclear EDF is richer, in terms of relevant operators,
compared to the electronic case.

Let us consider the Skyrme Hamiltonians that we have previously intro-
duced. Because of their zero-range character, Skyrme interactions when
inserted in Equation (9) will always produce a local functional, that is, an
energy density that depends on densities at the very same point. If we now
wish to use it as a starting point and build a more general and flexible ansatz,
we ought to remember that the most general local functional will depend on
all possible local densities.

All local densities can be built in a systematic way, and the interested
reader can follow Refs [70,71]. and/or Sec. 7.3.4 of Ref [67]. Local densities
are obtained by letting operators acting on the non-local density p(7,7’),
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and equating ¥ = 7’ afterwards. Due to the strong spin-dependence of
nuclear properties, we have to distinguish the non-local density from the
non-local spin density. The orbitals ¢;(7) that we have introduced around

Equation (7) are actually spinors ¢;(7, s). Then, we are forced to introduce

p(77';s,8) = qu ), (10)

and this latter quantity can be written as

p(7,7';s,s") = p(7, 7)1 +3(7,7) - 7, (11)
where the Pauli matrices ¢ form a complete basis, together with the identity
matrix 1, in order to express the 2 x 2 matrix defined by the spin indices s
and s’.

Derivative operators can be applied in a systematic way and, up to second
order, the procedure is described in Ref [71]. Since the functional must be
invariant under space translations, only derivatives with respect to the
relative coordinate, V — V', must be considered. Due to the identity

(6—6’)2 . (§+6')2 R

the action of the second derivative boils down to that of the operator V-V
Consequently, starting from p(7,7’) one obtains the local current

0= [(V-9)pw7)] . (12

2i =7/

and the kinetic energy density

(M) = V-V 7)| .

r=r'

There are the corresponding derivatives of the spin densities. Moreover, one
must consider both neutron and proton densities,” so that the number of
densities is doubled when the complete set obtained at a given order' is written.
Once all possible local densities are defined, the most general EDF will be

a combination of scalar terms that depend on these densities, and are invariant
under parity and time-reversal. Even if one limits oneself to terms that are
quadratic in the densities, the number of these terms can grow up dramatically
if one allows higher-order derivatives (cf. Ref [72], and in particular Table
XXVII therein). In front of each term one may write either a number, or
a scalar function of p. One notices already here the lack of a perturbative
parameter, or of a strategy for systematic improvement. On top of it, if the
structure of the EDF becomes involved, fitting all parameters becomes practi-
cally impossible. Last but not least, the question arises whether correlations
exist among different terms of the EDF. Note that we have left aside the
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question about the non-locality, by assuming that gradient terms take care of
it. Ref [73] is useful to compare with the electronic case.

[5] Is a covariant EDF needed or is a nonrelativistic formulation appropriate?

Relativistic effects could be considered in the kinematics (as we stated in
Sec. 1, typical kinetic energies of nucleons in the nucleus are ~ 35 MeV
which amounts to v/c ~ 0.28); however, the success of nonrelativistic
theory means that these effects can be reabsorbed when defining the para-
meters of the nuclear EDF. A relativistic, or covariant, theory has quite
different advantages, namely it permits addressing the question about the
spin-orbit terms as well as other questions on the structure of functionals.
Excellent review papers on covariant nuclear EDFs can be found in Refs
[74,75].

Historically, these EDFs have also evolved in a similar manner as we
discussed above. They started as energy functionals generated through
effective Lagrangians that include nucleons, effective mesons, and their
mutual couplings. Recently, they are also built without any reference to an
underlying Lagrangian. One builds instead all possible densities in terms of
the Dirac spinors v, associated with the single-nucleon orbitals (as we did
with the Schrodinger orbitals ¢, above). The results are the following 16
covariant local quantities:

Z‘/’l Ty,(7F), a=1...16. (13)

I'=1and I' = y* provide the familiar scalar and vector densities. The most
general covariant EDF will be a combination of all possible terms that are
built with the covariant local densities and respect symmetries.

Although a number of efforts have been devoted to studying the nonrelati-
vistic reduction of covariant EDFs,"" there is not a systematic way to connect
existing covariant and nonrelativistic EDFs. Despite this, if one looks at results
obtained along the two or three last decades, it is hard to detect any significant
overall difference between the performances of nonrelativistic and covariant
functionals. One can only stress again that the latter contain in general less
parameters, and that the spin-orbit phenomenology is fixed by the Dirac
structure. However, a lot of physics has been learnt through the systematic
comparison of the different types of EDFs.

[5] There are intrinsic limitations in EDFs, related to the choice of nucleon densities as
the only degrees-of-freedom even at low- or high-density. What about formation of
other particles at high densities, and clusterisation at low densities?

We have already mentioned, along Sec. 1, that we expect hyperons to
form in neutron stars simply because the energy density above 3 or 4 times
saturation density will allow so. In general, it is unclear which is the upper
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limit in density for a purely nuclear EDF, and how to match with a similarly
successful model that includes other particles that are created above a given
threshold.

In a different sense, and yet with a kind of analogy, there are limitations
for EDFs at low densities. Recently, clusterisation phenomena have captured
interest in nuclear physics (see, e.g. the review paper [76]). In light nuclei,
there are several evidences of phenomena in which nuclei clusterise by
forming (mainly although not exclusively) a-particle clusters. Intuitively,
one can grasp the fact that by forming a-clusters nuclear matter can gain
energy at some low density, because of the large binding energy of the a-
particle. Deuteron clustering may also take place in keeping with the
relatively strong proton-neutron attraction.

Clustering, once again, lie between nuclear physics and astrophysics as
neutron stars also explore low densities. For astrophysical simulations, some
multi-purpose EDFs have been designed that include some aspects related
to clustering (see [77,78] and references therein). Despite this, further
investigations are needed to clarify which clusterisation phenomena are
already implicitly included in existing EDFs [79], and which phenomena
call for an extension of the degrees of freedom that one usually puts in EDFs
so far. This is another difference with electronic DFT, where no purely
electronic bound states show up.

4. Applications

The format of this paper prevents displaying an exhaustive list of DFT
applications; in this Section, we simply focus on few illustrative examples.

4.1. Ground-state properties

One of the main observables that one aims at calculating within DFT is the
total energy, that is, the binding energy (1). Typical errors that affect the
existing functionals, in comparison with the experimental data, are of the
order of ~ 1-2 MeV. To achieve a better accuracy, it is mandatory to add
extra terms that are outside the pure DFT philosophy and have a mere
empirical justification (cf. Table I of Ref [80] and the related discussion).
These accuracies may be considered as satisfactory, with respect to the total
binding energy of =~ 10> — 10> MeV. However, one should bear in mind
that predicting masses is instrumental to obtain the Q-values of many
reaction processes that depend on mass differences,'” and these can either
benefit from error cancellations or be harmed by their amplification. The
transition rates can depend on powers of the Q-value, like in case of 3-decay.
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Figure 4. Comparison between theoretical and experimental binding energies of atomic nuclei.
Calculations are performed with different EDFs, SLy4 from Ref [53] and UNEDFO from Ref [81].
Figure taken and adapted from Ref [81].

Therefore, the effort of pushing down the error of mass models is still
continuing.

In Figure 4 we show two examples of comparison between the result of
EDF calculations and the experimental data. The Skyrme functional SLy4 [53]
is the latest of the standard Skyrme functionals built from a Hamiltonian.
Basically, only data from magic nuclei are considered in the parameter fit.
A more sophisticated fitting protocol has been used to fit UNEDFO [81], and
both spherical and deformed nuclei are included in that protocol. This helps
in improving the overall trend of the residuals. However, these are not really
normally distributed as one notices immediately the arch-like behaviour in
both panels. This is common to many EDFs. The arches span shells: in other
words, it seems that, still, reproducing with similar accuracy both closed-shell
and open-shell nuclei represents a non-trivial challenge.

The prediction of masses is closely related to the prediction of the proton
and neutron drip lines. In Figure 1 we have shown the drip lines obtained
with some EDFs. A thorough analysis of the uncertainties that plague
currently our knowledge of the drip lines can be found in Refs [13,14].
Experimentally, the neutron drip line is known only up to Z = 8. Going
towards heavy nuclei, the theoretical predictions for the neutron drip line
become increasingly model-dependent: the systematic uncertainties can
reach ~ ten mass units. Proton drip lines suffer from less uncertainties
because they lie closer to the stability valley.

Other quantities that testify to the quality of a given EDF are the neutron
and proton density distributions (cf. Sec. 5.2 of [80]). The most relevant
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moments of these distributions are the neutron and proton r.m.s. radii,
namely the square roots of

<rc21> EJd3r pq(?)rz. (14)

Unfortunately, we do not know experimentally very well the neutron den-
sities so far, due to the lack of a model-independent probe. Charge density
distributions have been in many cases obtained thanks to elastic electron
scattering experiments. Laser spectroscopy also allows extracting from the
atomic transitions some moments of the nuclear charge distributions. There
exist precise relationships between the charge density r.m.s. radii and the
proton density r.m.s. radii, that involve the nucleon electromagnetic form
factors; nevertheless, the approximate relationship (rfharge> = <rf)> +
0.8% [fm?] has been shown, as a rule, to be accurate enough.

Some examples of comparison of the results of DFT calculations with
experiment, in the case of charge radii, are shown in Figure 5. Starting our
short discussion from the heavier systems, the two different EDFs have a very
small spread, among themselves and with experiment, in the case of the Sn
isotopes. In the case of the Pb isotopes, if we restrict ourselves to neutron
numbers N larger than 116, HFB24 is closer to the experimental data in terms
of absolute values but DD-PC1 predicts better the kink after N = 128, which
has been known for some time to be attributable to the different spin-orbit
terms associated with the functionals."” In the case of Ni isotopes, DD-PC1 is
closer to the data whereas, finally, if we come to the case of Ca, the bell-shaped
trend of the radii between *°Ca and *3Ca is not reproduced by essentially any
of the available EDFs. Albeit short, this discussion highlights how to charge
radii can really inform us about several features of EDFs.

Ca Pb Ni Sn

., lfm]

4 54 46 Exp. F & Exp.
< — HFB24 — HFB24
34 — — DD-PC1 37 - 45 — DD-PC1|

JSOS PR TN TR [P U N HOPU SO MU RUPU PR BRI |
20 24 28 32 100 104 108 112 116 120 124 128 132 136 28 32 36 40 56 60 64 68 72 76

Neutron number Neutron number

Figure 5. Comparison of charge radii from experimental measurements and from DFT calcula-
tions. The experimental data from Ref [82] are represented by symbols. The lines refer to
different calculations, performed either with the nonrelativistic HFB24 mass model [83] or with
the covariant functional DD-PC1 introduced in Ref [84]. See the text for a short discussion.
Figure taken from Ref [87].
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There are many other open questions in nuclear science, to which the
attention of DFT practitioners has turned. In addition to neutron and proton
drip lines, one of the hot topics is related to superheavy nuclei. Intensive research
has been devoted to identifying these elements, and the periodic table now
extends far beyond Z = 92 [85]. The existence of these high-Z elements cannot
be understood by means of liquid drop-like formulas, as the Coulomb repulsion
would be too strong. No other microscopic approach apart from DFT can be
employed because of the size of the systems that makes computation quite
demanding. The role of EDFs for present and future challenges in this domain
is discussed in Ref [86].

4.2. Collective excitations

Nuclear DFT can be extended, beyond the static regime, to the study of
nuclear excitations. It has been known for some time that nuclei respond in
quite different ways to external fields, the response at high frequencies (like
in the giant resonance region) being more elastic and that at low frequencies
(associated to energies of the order of ~ MeV) being more plastic.
Pedagogical introductions to the DFT extension to the time-dependent
frame, in the elastic regime (i.e. the small-amplitude limit) can be found
in [56,87]. A broad survey of all relevant, recent results are provided by Ref
[80]. In general, many works have highlighted that the excitation modes of
nuclei are sensitive to features of the EDFs that do not manifest themselves
in the nuclear ground states.

To give a simple example, the nuclear so-called ‘breathing’ mode,'* in which
the nucleus expands and contracts, gives information on the nuclear compression
modulus. Although not in a straightforward manner, the compression moduli of
finite nuclei can be extrapolated to the compression modulus of infinite, uniform
nuclear matter. The compressibility is usually defined as

1 (oP\™" [, d (E\] (15)
3@ - PO

where P and V are, respectively, pressure and volume, and the second
equality holds for a fixed number of particles A, when the density p =
A/V is the variable. From this equation, it becomes apparent that if we
know the compressibility, we have a further constraint related to the depen-
dence of energy on the density p. In nuclear physics, it is customary to define
at the saturation point of nuclear matter the so-called incompressibility
given by K = pio x~'. Recent findings confirm that nuclear matter is more

incompressible than steel by almost 22 orders of magnitude [88].
In general, other kinds of responses provide valuable information on the
Equation of State (EoS) of infinite matter. Equation (15) sets a constraint on
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the dependence of the energy per particle on the total density p. However,
nuclear matter is composed of neutrons and protons. One can use as variables
either p, and p,, or the total density p and the relative neutron-proton

asymmetry f = (pn — pp> /p. Starting from the energy per particle in sym-

metric nuclear matter, that is, £ (p, 8 = 0), one can perform a Taylor expan-
sion in 8. Odd terms are prohibited by isospin symmetry,"> and one can write

Z(0.8) = (0B = 0) + S(R)F + O(BY). 16)

Many calculations have actually shown that the quartic term in 8* does not
play a significant role around saturation density and, to some extent, above it.

The quantity S(p) is called symmetry energy. Neglecting the O(8*) term in
Equation (16), the symmetry energy is also the difference between the
energy per particle of neutron matter and symmetric matter. Symmetric
nuclear matter is the most stable, as neutrons and protons can occupy the
lowest possible quantum levels, while increasing the number of neutrons
implies promoting particles to highest levels due to the Pauli principle; in
addition, one misses attractive contributions from the strong proton-neu-
tron interaction. This is why we expect the symmetry energy to be positive.
A schematic picture is shown in Figure 6.
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Figure 6. Schematic representation of the quantities defined in Equation (16) and in the text
below. The curves labelled by SNM (PNM) correspond to the energy per particle in symmetric
nuclear matter (pure neutron matter), namely to =0 (8= 1), The symmetry energy S(p) is the
difference between the two curves.
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The collective modes in which neutrons and protons oscillate out of phase,
so that the density stays approximately constant but  changes, inform us
2
271;:
Giant Dipole Resonance (GDR), in which all protons vibrate against all
neutrons under the effect of a uniform electric field, like in the plasmon
excitations of electronic systems. This kind of excitations is called isovector
as the local change of protons into neutron implies a local change of a unit of
isospin. Charge-exchange excitations in which a proton turns into a neutron,
or vice-versa, are also very interesting isovector excitation modes of nuclei and

they can also spontaneously occur under the form of -decay [89,90].

While most of these modes represent examples of small-amplitude
motion, applications of nuclear DFT to the large-amplitude case are con-
sidered in [57]. Reactions between two colliding nuclei [91] or fission
processes [92] can be and have been calculated using EDFs.

about which is the symmetry energy [80]. One example is the so-called

4.3. Neutron star calculations

Neutron stars, that we have introduced in Sec. 1, have a density profile that
spans 2-3 orders of magnitude. We have also reminded in Sec. 3 that EDFs
need still to be improved, in order to deal with the changes that nuclear
matter undergo at low and high density. Nevertheless, a large number of
DFT-based calculations have been devoted to neutron star properties.

The symmetry energy, that we have defined in Equation (16) as the energy per
particle to change protons into neutrons starting from symmetric matter and moving
to neutron matter, affects almost every property of neutron stars either directly or
indirectly. The very existence of a neutron star, and its bulk properties like the mass
and the radius, depend on it: if the symmetry energy grows enough as a function of
the density, more and more gravitational energy can be counterbalanced and the
neutron stars become more massive. For quite some time, it was believed that
neutron stars should have masses around 1.4 M (Mg being the symbol for the
solar mass). Along the last decade, new observational techniques have become
possible, and stars with mass larger than 2 M., have been identified; moreover, the
determination of radii has been constantly improved and is still improving (see the
references mentioned in [23]). Masses and radii put firm constraints on the EoS of
neutron matter. If hyperons, let alone deconfined quarks, were present in the inner
part, the conclusions concerning the EoS would change; but currently, there are
neither positive nor negative evidences related to such presence.

The symmetry energy also affects the composition of the outer crust
(where less neutron-rich nuclei are present if the symmetry energy
increases) [93,94], the transition density to the inner crust (the density at
which neutrons spill out of nuclei) [95], and the proton fraction in the inner
crust and outer core [94]. Last but not least, in the inner crust, neutrons are
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superfluid and the calculations must account for this exotic form of super-
fluidity [96]. The quantities that we have mentioned in this paragraph are
not directly observable, at variance with masses and radii, and yet affect in
a significant manner the neutron star behaviour.

Neutron stars are formed when a star with M>8My ends its life, at
a moment when only nuclei in the Fe region remain: these have maximal values
of BE(N, Z) [Equation (1)], and no nuclear reaction can release energy and
compensate the gravitational pressure. Then, collapse takes place and is fol-
lowed by a supernova explosion and the formation of a proto-neutron star. The
simulation of this process requires the nuclear EoS [97], including possibly
some clustering aspects at low density as we mentioned briefly in Sec. 3. The
processes explore high temperatures and this must be accounted for. While
a number of nuclear EoS are already available in tabulated form to be used for
such simulations, the analysis of their accuracy, of the sensitivity of the results to
specific inputs, and of the possible missing physics, is still ongoing.

Many types of electromagnetic signals can be detected from neutron stars.
It is useful to remind that neutron stars were identified under the form of
pulsars, namely stars that rotate along their magnetic axis by emitting dipole
radiation. There are also signals that testify to the existence of cataclysmic
events, like the so-called ‘giant flares’. Oscillations in the X-ray flux that
follows these flares are believed to be associated to the fact that neutron
stars can undergo starquakes: these vibrational modes have been also used
as a signature for the nuclear EoS (see [98] and references therein).

Last but most importantly, we have just seen the advent of an exciting time
related to multi-messenger astrophysics. An event associated with the merging of
neutron stars, GW170817, has led for the first time to the detection of gravitational
waves, of the whole electromagnetic signal from gamma-rays to radio waves, and
of neutrinos [99-102]. This has triggered a number of analysis, part of which still
ongoing, related to various crucial physics questions like, e.g. the nucleosynthesis
process [103]. As far as the EoS is concerned, numerical General Relativity (GR)
simulations performed by the LIGO and Virgo (LV) Collaboration have been able
to set constraints on the so-called ‘chirp’ mass associated with the event, that is

Mepiry = (M1M2)3/5/(M1 —I—Mz)l/5 (M; are the masses of the two neutron
stars), as well as on the tidal polarizability. This latter quantity reads

2 AR\’
A==k |=—— 17
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where G is the gravitational force constant and k, the Love number
[104,105], and it is associated with the ratio of the induced quadrupole
mass moment and the inducing gravitational field. It is very sensitive to the

mass and radius of the compact object, as they enter with a large power, and
these, in turn, are strongly related to the EoS. In future, new events of the
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same or other types (like the merging of a neutron star and a black hole) are
expected to give a strong boost to our understanding of neutron matter at
high density, perhaps changing the current paradigm.

5. Perspectives

It is hard to survey all possible perspectives in the exciting, and rapidly devel-
oping, domain of nuclear DFT. In particular, these perspectives are expected to
be shaped by (i) discoveries of new nuclei and new nuclear properties, close to
the drip lines and in the superheavy region; (ii) new observations of neutron star
properties and/or merging events with the associated multi-messenger signal;
(iii) progress in ab initio nuclear theory.

Not so much has been done, so far, to ground nuclear DFT on underlying
theories, in contrast with the case of electronic DFT. The systematic construction
of exchange-correlation functionals based on the state-of-the-art calculations of
the electron gas does not have a real counterpart in nuclear physics, despite some
attempts to start from Brueckner-Hartree-Fock calculations and build the
volume part of an EDF [106], or a Skyrme interaction [107,108]. The strategy
proposed in Ref [59] has still to be developed, and also in the case of EDFs built
around the idea of symmetry breaking and restoration [109] there are still steps to
be undertaken in order to include all correlations from many-body perturbation
theory, overcoming the technical difficulties. The most general program for an ab
initio-based DFT, that has been outlined in Ref [110], based on the idea of the
Legendre transformation of the effective action, is even more in its infancy. Yet, it
might be the most consistent path to cast DFT into the EDF scheme [111].

Despite these difficulties one can expect, generally speaking, important steps
forward in the next future as far as merging ab initio and DFT are concerned.
DFT is a mature field and ab initio techniques are, on the one hand, progressing
in a significant fashion and need, on the other hand, to be recast into something
less computationally demanding if heavy systems and/or highly excited states are
targeted. A different avenue, that may lead to EDFs rooted either in experimental
densities or in densities calculated by means of an underlying ab initio theory,
consists in exploiting reverse engineering. Basically, one formulates a sort of
Kohn-Sham inverse problem, so to infer the Kohn-Sham potential from the
densities and, in a further step, the energy functional from the Kohn-Sham
potential. Very preliminary steps have been taken along this line recently [112].
Machine learning techniques have been introduced as a tool to attack the many-
body problem [113], so one can expect progress in this respect.

It is likely that nuclear structure physics, and DFT-related works in particular,
will proceed in several directions rather than in a single one. I believe that hybrid
approaches, that combine robust statistical and fitting techniques starting from
the ab initio findings with appropriate physics insight, have the best chance to
give a new boost to the field. One can optimistically conclude that we expect to be
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able to write a more conclusive review paper soon, with less open questions,
along the lines of the predictions made in Ref [114].

Notes

1.

10.

Note the difference between the nucleus and the nucleon: the nucleon has constituent
quarks whose masses are small, so that the nucleon mass has mostly a dynamical origin.
Note here the difference with the case of atoms where the long-range Coulomb force rules.
Although these statements are somehow model-dependent, this description allows grasping
a lot of physics by retaining simplicity and elegance. See, e.g., the discussion in the first part of
Ref [115].

The name comes from the fact that this is the largest possible value allowed for the
cross section under the general hypothesis of flux conservation.

A hyperon is a baryon which is heavier than protons and neutrons as it contains at
least one strange quark s.

We neglect the spin degree of freedom here. Several electronic properties, although
certainly not all, can be described by neglecting spin. The spin degree of freedom is far
more relevant in the nuclear case and we shall come back to this in point [4] of this Section.
The wave functions vanish at the boundaries of the domain on which integrals are
performed, here and in what follows.

Cf. the time scales introduced in Sec. 1.

Or use isospin formalism.

Order means here the number of derivative operators.

11. The interested reader may consult Appendix 1 of the review paper [116], or the recent
paper [117] and references therein.

12. The Q-value of a reaction is defined as >, M;c* — Zf Mfcz, where M; (M) label the
mass of the initial (final) particles in the reaction.

13. Only functionals with specific ratios of the neutron-proton vs. neutron-neutron spin-
orbit force reproduce the kink, as explained in [60].

14. Also named Giant Monopole Resonance (GMR).

15. Isospin symmetry has been mentioned in Sec. 1. The reader must consider that
Coulomb interaction has to be dropped when considering infinite matter.
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