Given a 2-step stratified group which does not satisfy a slight strengthening of the Moore-Wolf condition, a sub-Laplacian L and a family T of elements of the derived algebra, we study the convolution kernels associated with the operators of the form m(L,- iT). Under suitable conditions, we prove that: (i) if the convolution kernel of the operatorm(L,- iT) belongs to L1, thenm equals almost everywhere a continuous function vanishing at 8 Riemann-Lebesgue lemma'); (ii) if the convolution kernel of the operator m(L,- iT) is a Schwartz function, then m equals almost everywhere a Schwartz function.
Spectral Multipliers on 2-Step Stratified Groups, I / M. Calzi. - In: JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS. - ISSN 1069-5869. - 26:2(2020 Apr 01), pp. 35.1-35.49. [10.1007/s00041-020-09740-y]
Spectral Multipliers on 2-Step Stratified Groups, I
M. Calzi
2020
Abstract
Given a 2-step stratified group which does not satisfy a slight strengthening of the Moore-Wolf condition, a sub-Laplacian L and a family T of elements of the derived algebra, we study the convolution kernels associated with the operators of the form m(L,- iT). Under suitable conditions, we prove that: (i) if the convolution kernel of the operatorm(L,- iT) belongs to L1, thenm equals almost everywhere a continuous function vanishing at 8 Riemann-Lebesgue lemma'); (ii) if the convolution kernel of the operator m(L,- iT) is a Schwartz function, then m equals almost everywhere a Schwartz function.File | Dimensione | Formato | |
---|---|---|---|
Spectral Multipliers on 2-Step Stratified Groups, I revised.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
604.8 kB
Formato
Adobe PDF
|
604.8 kB | Adobe PDF | Visualizza/Apri |
Spectral Multipliers on 2-Step Stratified Groups, I.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
953.91 kB
Formato
Adobe PDF
|
953.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.