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Abstract

Given a 2-step stratified group which does not satisfy a slight strengthening of the Moore-Wolf condition, a sub-
Laplacian L and a family T of elements of the derived algebra, we study the convolution kernels associated with
the operators of the form m(L,−iT ). Under suitable conditions, we prove that: i) if the convolution kernel of the
operator m(L,−iT ) belongs to L1, then m equals almost everywhere a continuous function vanishing at∞ (‘Riemann-
Lebesgue lemma’); ii) if the convolution kernel of the operator m(L,−iT ) is a Schwartz function, then m equals almost
everywhere a Schwartz function.

Keywords: Spectral multiplier, 2-step stratified group, sub-Laplacian, Schwartz class, Riemann–Lebesgue lemma.

2010 Mathematics Subject Classification. Primary: 22E30, 43A32; Secondary: 22E25, 43A20.

1 Introduction

It is well-known that the Fourier transform on Rn (or the torus T) provides an important tool for the study
of translation-invariant (differential) operators, for instance because it simultaneously ‘diagonalizes’ all these
operators. This tool has been extended in various ways during the twentieth century, enhancing the study of
left- or right-invariant (differential) operators on compact (Lie) groups (cf. [60]), on abelian locally compact
(Lie) groups (cf. [70]), and then on general locally compact (Lie) groups (cf., for instance, [47, 23, 33, 46]
for a comprehensive review of the literature). Nonetheless, the so-extended Fourier transform on a non-
commutative group is operator-valued, so that it is far less manageable than in the abelian case.

In some situations, further commutativity assumptions make it possible to work with an essentially scalar-
valued ‘portion’ of the Fourier transform. This is the case, for instance, in the setting of Gelfand pairs
(cf. [28, 40, 72]). Let us briefly review the basic aspects of this theory, with an eye towards the kind of
calculi we shall consider in the body of this paper. Assume that there is a compact Lie group K which acts
analytically on G by group automorphisms in such a way that the algebra L1

K(G) of K-invariant elements of
L1(G) is commutative. Then, (G oK,K) is a Gelfand pair and the associated homogeneous space, that is,
the quotient of GoK by K, can be identified with G. Under these assumptions, the (commutative) algebra
DK of left- and K-invariant differential operators has a finite number of generators L1, . . . ,Ln. Then, the
Gelfand spectrum of the Banach ∗-algebra L1

K(G), that is, the space of non-zero continuous multiplicative
linear functionals on L1

K(G), can be identified in a natural way with the joint spectrum σ(L1, . . . ,Ln) of
the commutative family of self-adjoint closures of the operators L1, . . . ,Ln of L2(G) (with initial domains
C∞c (G)); in addition, every f ∈ L1

K(G) can be interpreted as the (right) convolution kernel of the operator
m(L1, . . . ,Ln) on L2(G), where m is the Gelfand transform of f and m(L1, . . . ,Ln) is defined by means of
the spectral theorem (cf. [49, Subsection 5.3]). The correspondence between f and m can then be extended to
an isometry of the space of K-invariant endomorphisms of L2(G) onto the space L∞(β), where β is a suitable
measure on σ(L1, . . . ,Ln), and also to an isometry between L2

K(G) (the space of K-invariant elements of
L2(G)) and L2(β).

A classical example of this situation is the additive group Rn endowed with the action of the special
orthogonal group SO(n), in which case the algebra DSO(n) is generated by the standard Laplacian ∆, and
the resulting calculus is essentially related to the analysis of radial functions. Another thoroughly studied
example is that of the Heisenberg group Hn endowed with the action of the n-torus Tn (by componentwise
multiplication on the component Cn of Hn = Cn ×R), in which case the algebra DTn is generated by X2

1 +
Y 2

1 , . . . , X
2
n+Y 2

n , iT , where X1, . . . , Xn, Y1, . . . , Yn, T is the standard basis of left-invariant vector fields on Hn,
while the resulting analysis is essentially related to the study of ‘polyradial’ functions (cf., for instance, [4]).

Nonetheless, the setting of Gelfand pairs can be too narrow for some purposes. For example, for there to
exist a group K as above, the group G must be unimodular (cf. [40, Theorem IV.3.1]); if G is solvable, then
it must have polynomial growth; if G is nilpotent, then it is necessarily of step 2 (cf. [8, Corollary 7.4 and

∗The author is partially supported by a research grant of the Scuola Normale Superiore and is member of the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
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Theorem A]). In addition, even when such K exists, dealing with families of (K-invariant) operators which do
not generate the algebra DK still provides new kinds of issues. For example, when G = Hn and K = Tn as
above, the study of a Laplacian of the form L =

∑n
j=1 aj(X

2
j +Y 2

j ) + bT 2, with a1, . . . , an, b > 0, by means of
the Gelfand calculus is not trivial; for instance, there are no general means to determine whether an element
of L1

Tn is the convolution kernel associated with some bounded function of L or not.
Besides that, the study of more general operators has proved interesting in its own right, such as the

study of sub-Laplacians (as ‘local’ models of subelliptic operators on sub-Riemannian manifolds, cf., for ex-
ample, [63]), Rockland operators (as higher-order analogues of homogeneus sub-Laplacians on graded groups,
see Section 3), and, more generally, weighted subcoercive operators (as analogues of positive Rockland oper-
ators on general Lie groups, see Section 3). The study of the functional calculi associated with these kinds
of operators can be pursued in various directions, spreading from the proof of multiplier theorems (cf., for
instance, [55, 20, 59, 38, 50, 51, 52, 53]) to the local or microlocal study of pseudo-differential operators (cf.,
for instance, [62, Section 8]).

In this paper, we shall focus our attention on the functional calculi arising from the spectral theorem for
commutative families of self-adjoint operators on hilbertian spaces. Calculi of this kind have already been
considered, more or less explicitly, in a number of works (cf. [43, 20, 69, 4, 5, 30, 48, 49, 66, 31, 54] to name
only a few).

A very general class of operators for which this kind of analysis can be efficiently carried on is that of
weighted subcoercive systems of differential operators on connected Lie groups (cf. Section 3 for more details),
as the analysis pursued in [48, 49] shows. Then, assume that L1, . . . ,Lk form a weighted subcoercive system
of differential operators, and that G is a connected and unimodular Lie group to avoid technicalities. It
follows that these operators are essentially self-adjoint on L2(G) (with initial domain C∞c (G)) and that their
self-adjoint extensions commute, so that there is a unique spectral measure µ on Rk such that

Ljϕ =

∫
Rk
λj dµ(λ)ϕ

for every ϕ ∈ C∞c (G). If m : Rk → C is bounded and µ-measurable, we may then associate with m a
distribution K(m) such that

m(L1, . . . ,Lk)ϕ =

∫
Rk
m(λ) dµ(λ)ϕ = ϕ ∗ K(m)

for every ϕ ∈ C∞c (G). Thus, K generalizes both the inverse Fourier transform on the classical abelian case,
and an ‘inverse Gelfand transform’ in the case of Gelfand pairs considered above. It is then natural to
investigate which properties K shares with the preceding transforms. On the one hand, K in full generality
one may prove that the following hold (cf. [48, 49, 66]):

• there is a positive Radon measure β on Rk such that K extends to an isometry of L2(β) into L2(G)
(‘Plancherel measure’).

• K extends to a continuous linear mapping (of norm 1) from L1(β) into C0(G) (‘Riemann–Lebesgue
lemma’).

• there is an ‘integral kernel’ χ ∈ L∞(β ⊗ νG) such that, for every m ∈ L1(β),

K(m)(g) =

∫
Rk
m(λ)χ(λ, g) dβ(λ)

for almost every g ∈ G.1

• if G is a group of polynomial growth, then K maps S(Rk) into S(G) (suitably defined).

On the other hand, some questions are still open in full generality, such as:

(RL) if m ∈ L∞(µ) and K(m) ∈ L1(G), does m necessarily admit a continuous representative?

(S) if G is a group of polynomial growth and K(m) ∈ S(G) for some m ∈ L∞(µ), does m necessarily admit
a representative in S(Rk)?

Property (RL) is another analogue of the classical Riemann–Lebesgue lemma, and, to the best of our
knowledge, has only been addressed for sub-Laplacians on stratified groups and the plane motion group [54]

1Here, νG denotes a fixed Haar measure on G.
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and for homogeneous sub-Laplacian and invariant derivatives along the centre in MR+ groups [19] (cf. Def-
inition 6.1). In addition to that, property (RL) trivially holds when L1, . . . ,Lk generates the algebra of
invariant operators on a Gelfand pair, cf. [49, Corollary 5.7] for further details.

Concerning property (S), it has already been studied for sub-Laplacians on solvable Lie groups [54], on
several Gelfand pairs [4, 5, 30, 31], and for homogeneous sub-Laplacians and invariant derivatives along the
centre in MR+ groups [19].

The aim of the present paper is to further develop the theory concerning properties (RL) and (S) and to
provide further examples where these properties hold.

Even though some of our main results hold in greater generality, in order to keep the exposition as simple
as possible we shall confine ourselves to a homogeneous setting, making only use of homogeneous differential
operators on homogeneous groups. In this particular setting, the notion of a weighted subcoercive system
reduces to that of a Rockland family (cf. Definition 3.6).

Recall that, if G is a homogeneous group and L is a homogeneous left-invariant differential operator, then
L is said to be Rockland if it is hypoelliptic; by a slight abuse of notation, we shall not consider constant
operators to be Rockland, for technical convenience. Recall that Rockland operators were introduced in [62],
where C. Rockland proved that a homogeneous left-invariant differential operator L on a Heisenberg group G
is hypoelliptic if and only if dπ(L) is one-to-one on smooth vectors for every non-trivial irreducible continuous
unitary representation π of G, and conjectured that the same held for more general groups.2 Notice that
this characterization of hypoellipticity by means of the group Fourier transform generalizes in a natural way
the analogous characterization of hypoelliptic homogeneous differential operators with constant coefficients
on the Euclidean spaces. After Rockland’s conjecture was solved in the affirmative by B. Helffer and F.
Nourrigat [39], several mathematicians provided deeper insight into the properties of such operators, studying
the corresponding functional calculi (cf., for instance, [34, 43, 38, 50]) or the properties of the corresponding
heat semi-groups (cf., for instance, [6]), or the associated Sobolev spaces (cf., for instance, [32]).

Observe that, if k = 1 and L1 is a Rockland operator, then property (RL) holds trivially (cf. Theorems 3.21
and 3.26), while property (S) can be characterized in a simple way, at least on abelian groups (cf. [19, Theorem
3.2]). We shall therefore concentrate on the case of more operators, which is much more involved; in this
situation, properties (RL) and (S) may fail even in relatively simple contexts like abelian groups or the
Heisenberg groups (cf. [19, Proposition 5.5, Theorem 7.4, Proposition 8.1, and Proposition 8.5]).

In the first part of the paper, we introduce Rockland families on homogeneous groups, and some relevant
objects such as the ‘kernel transform’ K, the ‘Plancherel measure’ β, the ‘integral kernel’ χ, and the ‘multiplier
transform’M (Section 3). Then, we discuss the possibility of transferring properties (RL) and (S) to products
of groups (Section 4) or to polynomial images of the given families (Section 5). The former case is relatively
simple, and we are able to prove the following result (cf. Theorems 4.4 and 4.6).

Theorem 1.1. Let G1 and G2 be two homogeneous groups, L1,1, . . . ,L1,k a Rockland family of G1, and
L2,1, . . . ,L2,h a Rockland family on G2, both satisfying property (RL) (resp. (S)). Then the corresponding
Rockland family L′1,1, . . . ,L′1,k,L′2,1, . . . ,L′2,h on G1 ×G2 satisfies property (RL) (resp. (S)).

For what concerns those families whose elements are polynomial functions in a given family, a wide range
of situations can occur. We shall collect in Section 10 some technical results which can be applied in several
situations.

In the second part of the paper, we focus on the case of sub-Laplacians and bi-invariant vector fields on a
2-step stratified group G. Even in this specific context, there are two classes of such groups where the families
of the preceding kind behave quite differently:

• the groups G which have a homogeneous subgroup G′ contained in [G,G] such that the quotient of G
by G′ is a Heisenberg group;

• the groups G which have no such quotients.

We call the groups of the first kind MW+ groups, or groups satisfying the MW+ condition, since the
condition which defines these groups is a slight strengthening of the Moore–Wolf condition (cf. [57] and
also [58]); in fact, the condition that was actually considered in [57] is related to the centre Z of G instead of
[G,G]. Nevertheless, one may always factor out an abelian group so as to reduce to a group with Z = [G,G]
(cf. Remark 7.12). Since the treatment of these two classes of groups is quite different, we focus here on
groups which do not satisfy the MW+ condition; MW+ groups are studied in [19].

Our main results in this direction can be summarized as follows (cf. Theorems 8.5, 8.4, 8.2, and 9.2).

2Actually, Rockland considered a stronger property, that is, the hypoellipticity of L and its formal adjoint L∗, and proved a
corresponding characterization of these operators.
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Theorem 1.2. Let G be a 2-step stratified group which does not satisfy the MW+ condition. Let L be a
homogeneous sub-Laplacian on G and T1, . . . , Tn a basis of the the derived algebra of G. Then the following
hold:

• if 0 6 n′ < n, then (L, iT1, . . . , iTn′) satisfies property (RL);

• if G is a free 2-step stratified group, then (L, iT1, . . . , iTn) satisfies property (RL);

• if W = {0} (cf. Definition 7.1), then (L, iT1, . . . , iTn′) satisfies properties (RL) and (S) for every
n′ = 0, . . . , n.

In Section 7, we give an expression for the Plancherel measure and the integral kernel. Sections 8 and 9
are devoted to the proof of Theorem 1.2.

2 Definitions and Notation

2.1 Homogeneous Groups

Here we recall some basic definitions and properties of homogeneous groups. Cf. [34] for a more detailed
exposition.

A homogeneous Lie algebra g is a finite-dimensional Lie algebra over R endowed with a family of au-
tomorphisms (δr)r>0 such that δr = rA for every r > 0, where A is a diagonalizable endomorphism of the
vector space g with eigenvalues > 0. We shall generally write r · x instead of δr(x) for every r > 0 and for
every x ∈ g. A homogeneous group is a connected and simply-connected Lie group whose Lie algebra is
homogeneous.

Notice that a homogeneous Lie algebra g is necessarily nilpotent (cf. [34, Proposition 1.3]), though not all
nilpotent Lie algebras admit a homogeneous structure (cf. [25]). In addition, the Baker–Campbell–Hausdorff
formula defines a Lie group structure on g for which the exponential map is the identity. Conversely, if G is a
homogeneous group, then the corresponding exponential map is an analytic diffeomorphism. For this reason,
it is customary to identify G with its Lie algebra as manifolds. In particular, sometimes the identity e of G
is denoted by 0.

Let G be a homogeneous group. Then, we shall denote by νG a fixed Haar measure on G; we also denote
by Q the homogeneous dimension of G, that is, the unique real number such that νG(r · B) = rQνG(B) for
every νG-measurable subset B of G and for every r > 0.

Notice that νG is both left- and right-invariant; in addition, it induces the Lebesgue measure on the
Lie algebra of G by means of the exponential map (cf. [34, Proposition 1.2]). Therefore, with the previous
notation, the homogeneous dimension Q of G is the trace of A.

A homogeneous norm on G is a proper mapping | · | : G → R+ = [0,+∞[ which is symmetric3 and
homogeneous of degree 1.

Sometimes homogeneous norms are also required to be of class C∞ on the complement of the identity;
we shall not generally need this further assumption, but we recall that such homogeneous norms always exist
(cf. [34, p. 8]). Notice that a homogeneous norm | · | is quasi-subadditive; in other words, there is a constant
C > 0 such that |xy| 6 C(|x| + |y|) for every x, y ∈ G (cf. [34, Proposition 1.6]). A homogeneous group
admits subadditive homogeneous norms if (and only if) all the eigenvalues of A are > 1, with the previous
notation (cf. [37]).

If T is a distribution on G, then we define
〈
Ť , ϕ

〉
=
〈
T, ϕ( · )−1

〉
and 〈T ∗, ϕ〉 :=

〈
T, ϕ( ·−1)

〉
for every

ϕ ∈ C∞c (G). In particular, if f ∈ L1
loc(G), then f̌(x) = f(x−1) and f∗(x) = f(x−1) for almost every x ∈ G.

A function f ∈ L∞(G) is of positive type if 〈ϕ ∗ f |ϕ〉 > 0 for every ϕ ∈ C∞c (G). In this case, f = f∗ and
f has a continuous representative f0 such that f0(e) = ‖f‖∞ (cf. [33, Corollaries 3.21 and 3.22]).

Let X a (linear) differential operator (with smooth coefficients) on G. The formal adjoint X∗ of X is
the unique differential operator on G such that

∫
(Xϕ)ψ dνG =

∫
ϕ(X∗ψ) dνG for every ϕ,ψ ∈ C∞c (G). The

operator X is formally self-adjoint if X = X∗.
The operator X is homogeneous of degree d ∈ C if X[ϕ(r · )] = rd(Xϕ)(r · ) for every ϕ ∈ C∞(G) and for

every r > 0. We say that X is Rockland if it is homogeneous, left-invariant, hypoelliptic (cf. Definition 3.4
below), and annihilates constants.

Definition 2.1. LetG be a homogeneous group. Then, S(G) is the space of f ∈ C∞(G) such that (1+| · |)kXf
is bounded for every k ∈ N and for every homogeneous differential operator X on G, endowed with the
topology induced by the semi-norms f 7→ ‖(1 + | · |)kXf‖∞. The dual of S(G) is denoted by S ′(G).

3That is, |x−1| = |x| for every x ∈ G.
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Notice that the exponential mapping of G induces an isomorphism of S(G) onto the Schwartz space on
the Lie algebra of G (cf. [34, Section D of Chapter 1]); a similar statement holds for S ′(G).

2.2 Representations

We denote by 〈 · | · 〉H , or simply 〈 · | · 〉, the (hermitian) scalar product of a hilbertian space H; the notation
〈 · , · 〉 will be reserved to bilinear pairings only.

Let G be a homogeneous group, and π : G→ L(H) a unitary representation of G in a (complex) hilbertian
space H. Then, C∞(π) denotes the space of smooth vectors of the representation π, that is, the space of
v ∈ H such that the mapping x 7→ π(x)v is of class C∞.

If X is a left-invariant differential operator on G, then dπ(X) denotes the derived representation of X,
that is, the unique linear mapping C∞(π)→ H such that dπ(X)v = X(x 7→ π(x)v)(e) for every v ∈ C∞(π).

For every irreducible unitary representation π of G, we denote by [π] its equivalence class with respect to

unitary equivalence. The dual Ĝ of G is the set of such equivalence classes.4

The dual of a homogeneous group can be described by means of Kirillov’s theory; see, for example, [21, 46].

The same references also provide the existence of a Plancherel measure on G̃ and a corresponding Plancherel
formula. We shall describe the Plancherel measure more precisely for 2-step stratified groups in Section 7.

2.3 Measures

We shall now recall some general notation concerning measures. First of all, all measures are supposed to be
Radon, with the exception of the Hausdorff measures Hk on Rn, for k < n, and of the Plancherel measures
on the dual of a homogeneous group (cf. Subsection 2.2). Recall that, denoting by diam(A) the diameter of
a set A,

Hk(E) =
π
k/2

2kΓ
(
k
2 + 1

) sup
δ>0

inf

∑
j∈N

diam(Ej)
k : E ⊆

⋃
j∈N

Ej , ∀j ∈ N diam(Ej) < δ


for every E ⊆ Rn (cf., for instance, [2, Definition 2.46]).

For the sake of simplicity, we only deal with Radon measures on Polish spaces, that is, topological spaces
with a countable base whose topology is induced by a complete metric. For example, every locally compact
space with a countable base is a Polish space, but we shall need to deal with some Polish spaces which are
not locally compact (cf. the proof of Theorem 8.5). If X is a Polish space, then a positive Borel measure µ
on X is a Radon measure if and only if it is locally finite (cf. [14, Theorem 2 and Proposition 3 of Chapter
IX, § 3]).

If X and Y are Polish spaces, µ is a positive Radon measure on X, and π : X → Y is a µ-measurable
mapping, then π is called µ-proper if π∗(µ) is a Radon measure. Observe that, if π is proper, then it is
µ-proper for every Radon measure µ (cf. [14, Remark 2 of Chapter IX, § 2, No. 3]).

Let X and Y be Polish spaces, µ a positive Radon measure on X, and π : X → Y a µ-proper mapping;
define ν := π∗(µ). Then, a disintegration of µ relative to π is a family (µy)y∈Y of positive Radon measures
on X such that the following hold:

• X \ π−1(y) is µy-negligible for ν-almost every y ∈ Y ;

• if f : X → [0,∞] is µ-measurable, then f is µy-measurable for ν-almost every y ∈ Y , the mapping
y 7→

∫
X
f dµy is ν-measurable, and∫

X

f dµ =

∫
Y

∫
X

f(x) dµy(x) dν(y);

• µy(X) = 1 for ν-almost every y ∈ Y .

Notice that, under the stated assumptions, a disintegration of µ relative to π always exists, and is unique
up to modifications on a ν-negligible subset of Y (cf. [14, Proposition 13 of Chapter IX, § 2, No. 7]).

If µ is a Radon measure on a Polish space X, and f ∈ L1
loc(µ), then we shall denote by f · µ the Radon

measure E 7→
∫
E
f dµ. We say that two positive Radon measures on a Polish space are equivalent if they

share the same negligible sets; in other words, if they are absolutely continuous with respect to one another.

If X is a locally compact space, then we denote by C0(X) the space of complex-valued continuous functions
on X which vanish at the point at infinity, endowed with the maximum norm. We denote by M1(X) the
dual of C0(X), that is, the space of bounded (Radon) measures on X.

4Define equivalence classes e.g. as in [12, Chapter II, § 6, No. 9] so as to be able to collect them in a set.
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2.4 Distributions

We shall generally adopt Schwartz’s notation for the spaces of distributions. So, D′ will denote the space of
distributions and E ′ the space of distributions with compact support. In addition, we shall denote by E the
space of functions of class C∞ endowed with the topology of locally uniform convergence of all derivatives.
When no reference to the topological structure of E is needed, we shall prefer the symbol C∞. Analogously,
we shall denote by C∞c the space of compactly supported functions of class C∞, endowed with no topological
structures.

If π : Rn → Rm is a mapping of class C∞, T ∈ D′(Rn) and π is proper on Supp (T ), then we shall denote
by π∗(T ) the push-forward of T , defined by 〈π∗(T ), ϕ〉 = 〈T, ϕ ◦ π〉 for every ϕ ∈ C∞(Rm). Notice that the
present notation agrees with the the one defined in Subsection 2.3 when T is a measure.

2.5 Topological Tensor Products

In Section 4 we shall make use of the theory of tensor products of locally convex spaces, as well as of the
theory of nuclear spaces. We refer the reader to [36, 67] for a general treatment of these topics; here we shall
only recall some basic facts and notation.

Definition 2.2. Let E and F be two locally convex spaces (over C). We endow the algebraic tensor product
E ⊗ F (over C) with the finest locally convex topology for which the canonical mapping E × F → E ⊗ F is
continuous. We denote by E⊗̂F the Hausdorff completion of E ⊗ F .

Sometimes the locally convex space E ⊗ F defined above is denoted E ⊗π F and is called the projective
tensor product; since we shall not use other topologies on the vector space E ⊗ F , following [36] we simply
write E ⊗ F instead of E ⊗π F .

If E1, E2, F1, F2 are four Hausdorff locally convex spaces, and T1 : E1 → F1 and T2 : E2 → F2 are two
continuous linear mappings, then T1⊗ T2 : E1⊗E2 → F1⊗F2 is a continuous linear mapping and we denote
by T1⊗̂T2 : E1⊗̂E2 → F1⊗̂F2 its canonical extension.

Even though the tensor product defined above has several important properties and interacts nicely
with products and strict morphisms (homomorphisms, in the terminology of [67]), it is not compatible with
isomorphisms onto subspaces (cf. [67, Exercise 43.8, Proposition 43.9, and Remark 43.2]). This problem does
not occur if one of the two factors of both tensor products is nuclear (cf. [67, Proposition 43.7 and Theorem
50.1]).

Definition 2.3. Let E be a Hausdorff locally convex space. Then E is said to be nuclear if, for every
Hausdorff locally convex space F , the space E ⊗ F carries the topology of uniform convergence on the sets
of the form BE × BF , where BE and BF are equicontinuous subsets of E′ and F ′, respectively, under the
standard duality between E ⊗ F and E′ × F ′.

Nuclear spaces enjoy several useful properties. For example, their bounded subsets are precompact, so
that every (quasi-)complete nuclear space is semi-reflexive (cf. [67, Proposition 50.2]). In addition, subspaces,
quotients (modulo closed subspaces), products, countable inductive limits, and tensor products of nuclear
spaces are nuclear (cf. [67, Proposition 50.1]).

Several spaces of distributions and test functions are nuclear: for example, E , E ′, S, S ′, and D′ (as well
as its dual D, which C∞c with a suitable topology); see [67, Corollary to Theorem 51.5].

We end this section with a definition and a few technical results which will be used in Section 4.

Definition 2.4. Take n ∈ N∗ and let F be a Fréchet space. Define S(Rn;F ) as the subset of ϕ ∈ C∞(Rn;F )
where the semi-norms

ϕ 7→ sup
x∈Rn

(1 + |x|)k‖∂γϕ‖ρ

are finite for every k ∈ N, for every γ ∈ Nn, and for every continuous semi-norm ρ on F ; endow S(Rn;F )
with the corresponding topology.

Let C be a closed subset of Rn, and let NRn,C,F be the set of ϕ ∈ S(Rn;F ) which vanish on C. Then,
we define SRn(C;F ) := S(Rn;F )/NRn,C,F ; we shall omit to denote Rn when it is clear from the context. We
shall simply write SRn(C) or S(C) instead of SRn(C;C).

Proposition 2.5. Let F be a Fréchet space over C, and take n ∈ N∗.5 Then, the bilinear mapping S(Rn)×
F 3 (ϕ, v) 7→ [h 7→ ϕ(h)v] ∈ S(Rn;F ) induces an isomorphism

S(Rn)⊗̂F → S(Rn;F ).

5We denote by N the set of integers > 0, and by N∗ the set of integers > 0.
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The proof is similar to that of [67, Theorem 51.6] and is omitted.

Proposition 2.6. Take n1, n2 ∈ N∗, and let C1, C2 be two closed subspaces of Rn1 ,Rn2 , respectively. Then,
SRn1×Rn2 (C1 × C2) is canonically isomorphic to SRn1 (C1)⊗̂SRn2 (C2).

Proof. Define
Ψn,C : S(Rn) 3 ϕ 7→ (ϕ(x))x∈C ∈ CC

for every n ∈ N∗ and for every closed subspace C of Rn. Then, with the notation of Definition 2.4, NRn,C,C
is the kernel of Ψn,C . Throughout these proof, we shall identify S(Rn1 × Rn2) and S(Rn1)⊗̂S(Rn2) by
means of the canonical isomorphism (cf. [67, Theorem 51.6]). Then, Ψn1+n2,C1×C2 = Ψn1,C1⊗̂Ψn2,C2 (cf. [36,
Proposition 6 of Chapter I, §1, No. 3]). Therefore, [36, Proposition 3 of Chapter I, § 1, No. 2] implies that
NRn1×Rn2 ,C1×C2,C is the closed vector subspace of S(Rn1)⊗̂S(Rn2) generated by the tensors of the form
ϕ1 ⊗ ϕ2, with Ψn1,C1

(ϕ1) = 0 or Ψn2,C2
(ϕ2) = 0. By the same reference, we see that NRn1×Rn2 ,C1×C2,C is

the kernel of the canonical projection S(Rn1)⊗̂S(Rn2)→ SRn1 (C1)⊗̂SRn2 (C2). The assertion follows.

3 Rockland Families and the Kernel Transform

We begin this section with a brief description of weighted subcoercive systems of differential operators on
general connected Lie groups; we shall then specialize our discussion to Rockland families on homogeneous
groups.

In Subsection 3.1, G will denote a connected Lie group; in Subsection 3.2, G will denote a homogeneous
group of homogeneous dimension Q.

3.1 Weighted Subcoercive Systems

Weighted subcoercive operators were introduced by A. F. M. ter Elst and D. W. Robinson in [26]. Roughly
speaking, they may be considered as generalizations of (positive) Rockland operators to a non-homogeneous
setting and as analogues of higher-order elliptic operators in a (weighted) sub-Riemannian setting. Weighted
subcoercive operators enjoy several important properties, such as:

• if L is a weighted subcoercive operator and X is a differential operator of strictly lower (weighted)
order, then L+X is (weighted subcoercive and) hypoelliptic;

• if L is a weighted subcoercive operator and X is a differential operator of lower (weighted) order, then
there is a constant C > 0 such that ‖Xf‖2 6 C(‖f‖2 + ‖Lf‖2) for every f ∈ C∞c (G) (where L2(G) is
relative to a right Haar measure on G);

• if L is a weighted subcoercive operator, then it generates a holomorphic semigroup of operators on
Lp(G) whose kernel is independent of p ∈ [1,∞] and satisfies ‘Gaussian’ bounds.

All the preceding properties are modelled on analogous properties of (positive) Rockland operators; see [39,
6, 26] for a precise statement and the proof of the preceding assertions. Actually, the very notion of a weighted
subcoercive operator is modelled, by a contraction argument, on that of a Rockland operator. With the
purpose of underlining this fact, we re now going to define weighted subcoercive operators in a way which is
slightly different (but equivalent) to the one chosen in [26]. Before passing to that, let us note that weighted
sub-coercive operators lack the properties of Rockland operators which are deeply related to homogeneity,
such as the fact that homogeneous functions of the given operator are homogeneous, which holds for positive
Rockland operators but may not even make sense in a general context. In addition, homogeneity arguments
which refer to large radii may fail for general weighted subcoercive operators, for example when studying
necessary conditions for the Lp − Lq boundedness of Riesz potentials (when defined); on the contrary, the
homogeneous arguments which refer to small radii might be extended in a suitable way, due to the ‘locality’ of
the contraction procedure used to define weighted subcoercive operators. Further, arguments which require
the use of dyadic decompositions may not be easily extended to weighted subcoercive operators without
further assumptions; for example, to prove multiplier theorems such as [50, Theorem 4.6], ‘local’ estimates
might no longer be sufficient, since they may not be extended by homogeneity.

Let G be a Lie group and let g be its Lie algebra. Let (gλ)λ>0 be an increasing, right-continuous, separated,
and exhaustive filtration of g; in other words, (gλ) is an increasing sequence of vector subspaces of g such that⋂
µ>λ gµ = gλ for every λ > 0, g0 = 0,

⋃
λ>0 gλ = g, and [gλ1

, gλ2
] ⊆ gλ1+λ2

for every λ1, λ2 > 0. For every
X ∈ g, define degX := min{λ > 0: X ∈ gλ}. Define, for every λ > 0, gλ− :=

⋃
µ<λ gµ and g∗,λ := gλ/gλ− ,

and set
g∗ :=

⊕
λ>0

g∗,λ.
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Notice that [ · , · ] induces bilinear mappings g∗,λ1
×g∗,λ2

→ g∗,λ1+λ2
for every λ1, λ2 > 0, which then define a

Lie algebra structure on g∗. More precisely, g∗ becomes a homogeneous Lie algebra with dilations defined by
r ·X := rλX for every X ∈ g∗,λ and for every λ > 0. Denote by G∗ the corresponding homogeneous group;
G∗ is then the (local) contraction of G.

Further, let U(g) be the enveloping algebra of g, and define Uλ as the vector space generated by the
products (as left-invariant differential operators on G) of the form X1 · · ·Xk, for k > 0, X1, . . . , Xk ∈ g and
degX1+· · ·+degXk 6 λ. Then, (Uλ) is an increasing, right-continuous, and exhaustive filtration of U(g) with
U0 = RI, where I denotes the identity operator. For every X ∈ U(g), define degX := min{λ > 0: X ∈ Uλ}.
Define Uλ− :=

⋃
µ<λ Uµ and U∗,λ := Uλ/Uλ− for every λ > 0 (while U∗,0 := U0), and set

U∗ :=
⊕
λ>0

U∗,λ.

As for g∗, we endow U∗ with an algebra structure, observing that the product of U(g) induces bilinear
mappings U∗,λ1 × U∗,λ2 → U∗,λ1+λ2 for every λ1, λ2 > 0.

We leave to the reader the proof of the following simple result, which is basically a consequence of the
Poincaré–Birkhoff–Witt theorem (cf. [17, Chapter I, § 2, No. 7, Theorem 1]).

Proposition 3.1. The canonical inclusions gλ ⊆ Uλ, λ > 0, induce a linear mapping π∗ : g∗ → U∗ such that
π∗([X,Y ]) = [π∗(X), π∗(Y )] for every X,Y ∈ g∗. The canonical extension U(π∗) : U(g∗) → U∗ of π∗ is an
isomorphism of algebras.

Definition 3.2. A left-invariant differential operator L on G is said to be weighted subcoercive (with respect
to the filtration (gλ)) if the element L + L∗ + U(degL)− of U∗ induces a positive Rockland operator on G∗
through U(π∗), with the notation of Proposition 3.1.

In the preceding definition, L∗ denotes the formal adjoint of L with respect to a right Haar measure on
G. Notice that, if we replace L∗ with the formal adjoint of L with respect to another (non-zero) relatively
invariant measure on G (for instance, a left Haar measure), then L+L∗+U(degL)− is unchanged. In addition,
observe that, if L is weighted subcoercive, then degL ∈ 2λN∗ for every λ > 0 such that g∗,λ 6⊆ [g∗, g∗].

We may now recall the definition of a weighted subcoercive system of differential operators (cf. [49]).

Definition 3.3. A weighted subcoercive system on G (relative to the filtration (gλ)) is a finite family
L1, . . . ,Lk of formally self-adjoint, commuting, left-invariant differential operators on G such that the differ-
ential operator P (L1, . . . ,Lk) is weighted subcoercive for some (real) polynomial P in k indeterminates.

3.2 Rockland Families

We recall that, from now until the end of this section, G denotes a homogeneous group of homogeneous
dimension Q.

Definition 3.4. Let LA = (Lα)α∈A be a family of differential operators on G. We say that LA is jointly
hypoelliptic if the following hold: if V is an open subset of G and T is a distribution on V such that
LαT ∈ C∞(V ) for every α ∈ A, then T ∈ C∞(V ).

The following result enriches [48, Proposition 3.6.3].

Theorem 3.5. Let LA = (Lα)α∈A be a non-empty commutative finite family of formally self-adjoint, homo-
geneous, left-invariant differential operators which annihilate constants on G. Then, the following conditions
are equivalent:

1. LA is jointly hypoelliptic;

2. for every continuous non-trivial irreducible unitary representation π of G in a hilbertian space H, the
family of operators dπ(LA) is jointly injective on C∞(π);

3. the algebra generated by LA contains a positive Rockland operator, possibly with respect to a different
family of dilations on G with respect to which the Lα are still homogeneous.

4. the Lα are essentially self-adjoint on C∞c (G), their self-adjoint extensions commute, and for every
m ∈ S(RA) the convolution kernel of the operator m(LA) belongs to S(G);

5. LA is a weighted subcoercive system.
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Proof. 1 =⇒ 2. This is a simple adaptation of the proof of [7, Theorem 1].
2 =⇒ 3. This is the implication (ii) =⇒ (i) of [48, Proposition 3.6.3].
3 =⇒ 1. Take an open subset V of G and T ∈ D′(V ) such that LαT ∈ C∞(V ) for every α ∈ A. Take

P ∈ C[A] such that P (0) = 0 and P (LA) is hypoelliptic. Then, P (LA)T ∈ C∞(V ), so that T ∈ C∞(V ).
3 =⇒ 4. This follows from [48, Propositions 1.4.4, 3.1.2, and 4.2.1].
3 ⇐⇒ 5. This follows from [48, Proposition 3.6.3].
4 =⇒ 3. Notice first that, by [56, Proposition 1.1], we may reduce to the case in which G is graded.

Hence, there is a positive homogeneous proper polynomial P on RA, e.g. a suitable sum of even powers of
coordinate functions. Now, take t > 0 and let pt be the convolution kernel of the operator e−tP (LA), so that
pt ∈ S(G) for t > 0, while p0 = δe. In addition, denoting by d the degree of P (LA),

pt(g) = t−
Q/dp1

(
t−

1/d · g
)

for every t > 0 and for every g ∈ G. Arguing as in the proof of [34, Proposition 1.68], we see that, if we define

p(t, g) :=

{
pt(g) if t > 0

0 if t 6 0

for (t, g) ∈ R×G, then p is a fundamental solution of ∂t − P (LA) and is of class C∞ on (R×G) \ {(0, e)}.
Consequently, p∗ is a fundamental solution of the right-invariant differential operator associated with ∂t −
P (LA). Arguing as in the proof of [68, Theorem 2.1], we see that ∂t − P (LA) is hypoelliptic, so that also
P (LA) is hypoelliptic.

Definition 3.6. A Rockland family is a non-empty finite commuting family of homogeneous left-invariant
differential operators annihilating constants which satisfies the equivalent conditions of Theorem 3.5.

Here we depart slightly from the notion of ‘Rockland system’ as defined in [48]. Indeed, a Rockland system
is a Rockland family, while a Rockland family need not be a Rockland system, since the algebra it generates
need not contain a Rockland operator. Nevertheless, the difference is only illusory: as Theorem 3.5 shows,
given a Rockland family LA, one may change the dilations of G in such a way that LA becomes a Rockland
system. In other words, up to a change of dilations, there is no difference between Rockland families and
Rockland systems.

Notice that, as a consequence of the results of Section 5, the properties we are going to investigate do not
pertain to the chosen family LA, but actually to the (non-unital) algebra it generates. As a matter of fact, we
can start with a commutative, finitely generated, formally self-adjoint and dilation-invariant sub-algebra of
the complexification UC(g) of the universal enveloping algebra of g, and require that it contains a hypoelliptic
operator which annihilate constants. It is not hard to see that such algebras are generated by a Rockland
family (use [61] to prove that dilation-invariant sub-algebras are graded, that is, generated by homogeneous
elements), and that different Rockland families which generate the same algebra are equivalent in a natural
sense.

Definition 3.7. Let LA be a Rockland family. Then, we denote by µLA the spectral measure associated
with the self-adjoint extensions of the Lα and by σ(LA) its support, that is, the joint spectrum of LA.

We say that a µLA -measurable function m : σ(LA) → C (or m : RA → C) admits a kernel if C∞c (G) is
contained in the domain of m(LA). In this case, S(G) is contained in the domain of m(LA) and there is a
unique K ∈ S ′(G) such that m(LA)ϕ = ϕ ∗K for every ϕ ∈ S(G) (cf. [24, Theorem 7.2]); we shall denote K
by KLA(m).

We shall often need some dilations on σ(LA) which reflect the homogeneity of the Lα. This leads to the
following definition.

Definition 3.8. Let LA be a Rockland family. For every r > 0, denote by λ 7→ r · λ the unique bijection of
σ(LA) onto itself such that KLA(prα(r · )) = (r · )∗Lα for every α ∈ A, where prα : RA → R is the projection
onto the α-th component. In other words, r · (λα) = (rδαλα) for every (λα) ∈ σ(LA), assuming that Lα is
homogeneous of degree δα for every α ∈ A.

We denote by | · | a proper positive function on σ(LA) which is homogeneous of degree 1 with respect to
these dilations.6

Let us now introduce our main objects of study.

6Notice that, by homogeneity, | · | is proper if and only if it is continuous and vanishes only at 0 (argue as in the proof of [34,
Lemma 1.4]).
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Definition 3.9. Let LA be a Rockland family. We say that LA satisfies property:

(RL) (‘Riemann-Lebesgue’) if every m ∈ L∞(µLA) such that KLA(m) ∈ L1(G) has a continuous representa-
tive;

(S) (‘Schwartz’) if every m ∈ L∞(µLA) such that KLA(m) ∈ S(G) has a representative in S(σ(LA))
(cf. Definition 2.4).

Remark 3.10. Observe that we do not require that m should have a representative in C0(σ(LA)) in the
definition of property (RL). In fact, the general theory shows that m vanishes at the point at infinity (cf. [49,
Proposition 3.14]).

Thanks to Theorem 3.5, we may take advantage of the study of weighted subcoercive systems pursued
in [48, 49]. For the ease of the reader, we shall collect below some basic results from [48, 49, 66] which will be
used repeatedly in the following sections. We shall briefly indicate how to extend such results to the present
setting for completeness.

Lemma 3.11. Let m be a function on σ(LA) which admits a kernel in the sense of Definition 3.7. Then,
for every r > 0,

KLA(m) = KLA(m)∗ and KLA(m(r · )) = (r · )∗KLA(m)

If, in addition, m′ is a bounded function on σ(LA) and KLA(m′) ∈ S(G), then

KLA(mm′) = KLA(m) ∗ KLA(m′) = KLA(m′) ∗ KLA(m).

Proof. Apply [49, Lemma 3.4 and Proposition 5.1] to mχSj and m′, where Sj = {λ ∈ σ(LA) : |m(λ)| 6 j},
and to pass to the limit.

Proposition 3.12. Let π be a homogeneous homomorphism of G onto a homogeneous group G′. Then, the
following hold:

1. dπ(LA) = (dπ(Lα))α∈A is a Rockland family on G′;

2. σ(dπ(LA)) ⊆ σ(LA);

3. if m : RA → C is µLA-measurable and continuous on an open set which carries µdπ(LA), and if KLA(m) ∈
M1(G) + E ′(G), then

π∗(KLA(m)) = Kdπ(LA)(m).

Proof. 1. The fact that dπ(LA) is Rockland follows from the fact that, if π̃ is a continuous unitary repre-
sentation of G′, then π̃ ◦ π is a continuous unitary representation of G, with C∞(π̃) = C∞(π̃ ◦ π) since π
is a submersion, and dπ̃(dπ(LA)) = d(π̃ ◦ π)(LA); finally, π̃ ◦ π is irreducible or trivial if and only if π̃ is
irreducible or trivial, respectively.

3. Let π̃ be the right quasi-regular representation of G in L2(G′), that is, (π̃(g)f)(g′) = f(g′π(g)) for
every g ∈ G, for every f ∈ L2(G′), and for almost every g′ ∈ G′. Then [49, Proposition 3.7], applied to
π̃, implies that our assertion holds if m ∈ C0(σ(LA)) and KLA(m) ∈ L1(G). The general case follows by
approximation.

2. This follows easily from 3.

The following definition will shorten the notation in the sequel.

Definition 3.13. Let F be a subspace of D′(G). We denote by FLA the set of KLA(m) as m runs through
the set of µLA -measurable functions which admit a kernel in F .

Proposition 3.14. Let F be a Fréchet space which is continuously embedded inM1(G). Then, FLA is closed
in F .

In particular, this applies to L1(G) and S(G).

Proof. Let (mj) be a sequence in L∞(µLA) such that the sequence (KLA(mj)) converges to some f in F .
Then, (mj(LA)) is a Cauchy sequence in L(L2(G)), so that (mj) converges to some m in L∞(µLA) by spectral
theory, so that KLA(m) = f .

The following theorem is a particular case of [49, Lemma 3.9, Theorem 3.10, and Proposition 3.12].

Theorem 3.15. Let LA be a Rockland family. Then, there is a unique positive Radon measure βLA on σ(LA)
such that the following hold:
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1. µLA and βLA are equivalent;

2. KLA induces an isometry of L2(βLA) onto L2
LA(G);

3. (r · )∗(βLA) = r−QβLA for every r > 0.

The following corollary has already been considered in [49, Proposition 3.14] for the case p = 1. The
general case follows by interpolation.

Corollary 3.16. Take p ∈ [1, 2]. Then, KLA induces a unique continuous linear mapping

KLA,p : Lp(βLA)→ Lp
′
(G).

In addition, KLA,1 maps L1(βLA) into C0(G), has norm 1, and induces an isometry from the set of positive
βLA-integrable functions into the set of continuous functions of positive type on G.

From the preceding corollary we deduce the existence of an ‘integral kernel’ χLA for the ‘kernel transform’
KLA . This integral kernel was introduced in [66, Theorem 2.11] for a sub-Laplacian on a group of polynomial
growth, but can ne defined in greater generality.

Proposition 3.17. There is a unique χLA ∈ L∞(βLA ⊗ νG) such that

KLA(m)(g) =

∫
σ(LA)

m(λ)χLA(λ, g) dβLA(λ)

for νG-almost every g ∈ G. In addition, ‖χLA‖∞ = 1.

Proof. Apply the Dunford–Pettis theorem and Corollary 3.16 (cf. also [66, Theorem 2.11]).

We now pass to show some of the main properties of χLA . In particular, we shall find some representatives
of χLA which are particularly well-behaved. The following simple result generalizes [66, Theorem 2.33], and
translates the second assertion of Lemma 3.11 in terms of χLA ; the proof is elementary and is omitted.

Proposition 3.18. For every r > 0 and for (βLA ⊗ νG)-almost every (λ, g) ∈ σ(LA)×G,

χLA(r · λ, g) = χLA(λ, r · g).

The following property is reminiscent of an analogous one concerning Gelfand pairs. It extends [66,
Proposition 2.14] to our setting; since the original proof does not seem to extend to our situation, we shall
present an alternative one.

Proposition 3.19. Take a βLA-measurable function m : σ(LA)→ C which admits a kernel inM1(G)+E ′(G).
Then

KLA(m) ∗ χLA(λ, · ) = χLA(λ, · ) ∗ KLA(m) = m(λ)χLA(λ, · )

for βLA-almost every λ ∈ σ(LA).

Proof. Notice first that, for every ϕ2 ∈ C∞c (G), the linear functional

L∞(G) 3 f 7→ 〈KLA(m) ∗ f, ϕ2〉 = 〈f,KLA(m)̌ ∗ ϕ2〉 ∈ C

is continuous with respect to the weak topology σ(L∞(G), L1(G)). In addition, for every ϕ1 ∈ C∞c (σ(LA)),

KLA(ϕ1) =

∫
σ(LA)

ϕ1(λ)χLA(λ, · ) dβLA(λ)

in L∞(G), endowed with the weak topology σ(L∞(G), L1(G)). Therefore,∫
σ(LA)

〈KLA(m) ∗ χLA(λ, · ), ϕ2〉 ϕ1(λ) dβLA(λ) = 〈KLA(m) ∗ KLA(ϕ1), ϕ2〉

= 〈KLA(mϕ1), ϕ2〉

=

∫
σ(LA)

(mϕ1)(λ) 〈χLA(λ, · ), ϕ2〉 dβLA(λ),

whence the assertion by the arbitrariness of ϕ2. The other equality is proved similarly.
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Corollary 3.20. Let P be a polynomial on σ(LA). Then

P (LA)χLA(λ, · ) = P (LRA)χLA(λ, · ) = P (λ)χLA(λ, · )

for βLA-almost every λ ∈ σ(LA); here, LRA denotes the family of right-invariant differential operators which
corresponds to LA.

The following result shows the existence of well-behaved representatives of χLA . Its proof follows the lines
of those of [66, Lemmas 2.12 and 2.15, and Propositions 2.17 and 2.18], with minor modifications.

Theorem 3.21. There is a representative χ0 of χLA such that the following hold:

1. χ0(λ, · ) is a function of positive type of class C∞ with maximum 1 for every λ ∈ σ(LA);

2. for every homogeneous left- and right-invariant differential operators X and Y on G of degrees dX and
dY , respectively, there is a constant CX,Y > 0 such that

‖Y Xχ0(λ, · )‖∞ 6 Cγ1,γ2 |λ|
dX+dY

for every λ ∈ σ(LA);

3. χ0(λ, · ) converges to χ0(0, · ) = 1 in E(G) as λ→ 0;

4. χ0( · , g) is βLA-measurable for every g ∈ G.

Proof. Observe first that, since KLA(m) is a continuous function of positive type with maximum 1 for every
positive function m in L1(βLA) with integral 1, and since L1(G) is separable, χLA(λ, · ) is a continuous
function of positive type with maximum 1 for βLA-almost every λ ∈ σ(LA).

Now, there is a unique (positive Radon) measure β̃ on S := {λ ∈ σ(LA) : |λ| = 1} (cf. Definition 3.8)

such that
∫
σ(LA)

m dβLA =
∫∞

0

∫
S
m(r · λ) dβ̃(λ) rQ−1dr (argue as in the proof of [34, Proposition 1.15],

using 3 of Theorem 3.15). Similarly, by Proposition 3.18 there is a unique χ̃ ∈ L∞(β̃ ⊗ νG) such that

χLA(r ·λ, r−1 · g) = χ̃(λ, g) for (νR∗+ ⊗ β̃⊗ νG)-almost every (r, λ, g) ∈ R∗+×S×G, where νR∗+ denotes a Haar

measure on the multiplicative group R∗+ =]0,+∞[.
Fix a representative χ̃1 of χ̃, and define

χ̃0(λ, g) :=
1

m(λ)2
KLA(m) ∗ χ̃1(λ, · ) ∗ KLA(m)

for every (λ, g) ∈ S×G, where m is a nowhere vanishing Schwartz function onRA. Then, χ̃0 is a representative

of χ̃ by Proposition 3.19 and χ̃0(λ, · ) is a function of positive type of class C∞ with maximum 1 for β̃-almost

every λ ∈ S; we may assume that this happens for every λ ∈ S. Then, define χ0(λ, g) := χ̃0(|λ|−1 · λ, |λ| · g)
for every (λ, g) ∈ σ(LA) × G with λ 6= 0, so that 1, 2, and 4 follow. For what concerns 3, observe that the
χ0(λ, · ), as |λ| 6 1, stay in a bounded, hence relatively compact, subset of E(G) by 2. In addition, if h is a
cluster point of χ0(λ, · ) for λ → 0, then 2 implies that Xh = 0 for every left-invariant vector field on G, so
that h is constant. By 1, h(e) = 1, whence 3.

We conclude this section with some remarks concerning the adjoint of KLA and the continuity of χLA .

Definition 3.22. We denote by MLA : M1(G)→ L∞(βLA) the transpose of the mapping

L1(βLA) 3 m 7→ KLA,1(m)̌ ∈ C0(G).

Notice thatMLA coincides with the adjoint ofKLA : L2(βLA)→ L2(G) on L1(G)∩L2(G). By interpolation
we then deduce thatMLA extends to a continuous linear mapping of Lp(G) into Lp

′
(βLA) for every p ∈ [1, 2].

In addition, observe that the definition of χLA and routine arguments lead to the following result (cf. [66,
Theorem 2.13]).

Proposition 3.23. Take a representative χ0 of χLA as in Theorem 3.21. Then, for every µ ∈ M1(G) we
have

MLA(µ)(λ) =

∫
G

χ0(λ, g) dµ(g)

for βLA-almost every λ ∈ σ(LA).

Thus, from Proposition 3.19 we deduce the following result.
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Corollary 3.24. Take m ∈ L∞(βLA) such that KLA(m) ∈M1(G) and µ ∈M1(G). Then

MLA(KLA(m) ∗ µ) =MLA(µ ∗ KLA(m)) = mMLA(µ).

Corollary 3.25. Take a function m ∈ L∞(βLA) such that KLA(m) ∈ M1(G). Then, m =MLA(KLA(m)).
In particular, m is continuous at 0 and

m(0) =

∫
G

dKLA(m).

Proof. The first assertion follows from Corollary 3.24, applied with µ := δe. The second assertion follows
from 3 of Theorem 3.21.

Theorem 3.26. The following conditions are equivalent:

1. χLA has a representative χ0 such that χ0( · , g) is continuous on σ(LA) for νG-almost every g ∈ G;7

2. MLA induces a continuous linear mapping from L1(G) into C0(σ(LA));

3. MLA induces a continuous linear mapping from M1(G) into Cb(σ(LA));

4. χLA has a continuous representative.

In particular, this shows that, if χLA has a continuous representative, then LA satisfies property (RL).
Nevertheless, the converse fails, as Remark 8.3 shows.

Proof. 1 =⇒ 2. Take ϕ ∈ L1(G). In order to prove that MLA(ϕ) is continuous, it suffices to show that

MLA(ϕ)(λ) =

∫
G

χ0(λ, g)ϕ(g) dg

for βLA-almost every λ ∈ σ(LA), and to apply the dominated convergence theorem. In order to prove that
MLA(ϕ) vanishes at ∞, it suffices to observe that, if τ ∈ C∞c (σ(LA)) and τ(0) = 1, then MLA(ϕ) is the
limit in Cb(σ(LA)) of MLA(ϕ ∗ KLA(τ(2−j · ))), which equals τ(2−j · )MLA(ϕ) by Corollary 3.24.

2 =⇒ 4. Take τ ∈ S(σ(LA)) such that τ(λ) > 0 for every λ ∈ σ(LA). Observe that the mapping G 3
g 7→ KLA(τ)(g · ) ∈ L1(G) is continuous, so that also the mapping G 3 g 7→ MLA(KLA(τ)(g · )) ∈ C0(σ(LA))
is continuous. Therefore, the mapping

σ(LA)×G 3 (λ, g) 7→ MLA(KLA(τ)(g · ))(λ) ∈ C

is continuous. Now, let χ1 be a representative of χLA as in Theorem 3.21. Then, Proposition 3.19 implies
that

MLA(KLA(τ)(g · ))(λ) =

∫
G

KLA(τ)(gg′)χ1(λ, g′−1) dg′ = [KLA(τ) ∗ χ1(λ, · )](g) = τ(λ)χ1(λ, g)

for (βLA⊗νG)-almost every (λ, g) ∈ σ(LA)×G. In particular, χLA has a representative which is continuous on
σ(LA)×G. By [15, Corollary to Theorem 2 of Chapter IX, § 4, No. 2], χLA has a continuous representative.

4 =⇒ 1. Obvious.
4 =⇒ 3. The proof is similar to that of the implication 1 =⇒ 2.
3 =⇒ 2. This follows from the proof of the implication 1 =⇒ 2.

4 Products

In this section we deal with the following situation: we have a finite family of homogeneous groups (GA)A∈A,
and on each GA a Rockland family LA.8 Then, we shall consider G :=

∏
A∈AGA, endowed with the dilations

r · (gA) := (r · gA),

for r > 0 and (gA) ∈ G. We shall denote by A′ the union of A and, for every α ∈ A′, we shall denote by L′α
the operator on G induced by Lα. e denote by L′A′ the family (L′α)α∈A′ . We shall investigate what we can
say about L′A′ on the ground of our knowledge of the families LA.

The following result is a consequence of [49, Theorem 5.4 and Corollary 5.5] except for the last point,
which is an easy consequence of the preceding ones.

7Notice that, in principle, this condition is weaker than separate continuity.
8In order to avoid technical issues, we shall assume that the elements of A are pairwise disjoint.
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Proposition 4.1. The following hold:

1. L′A′ is a Rockland family and σ(L′A′) =
∏
A∈A σ(LA);

2. take a µLA-measurable function mA : σ(LA) → C which admits a kernel for every A ∈ A. Then,⊗
A∈AmA is µL′

A′
-measurable, admits a kernel, and

KL′
A′

(⊗
A∈A

mA

)
=
⊗
A∈A
KLA(mA);

3. βL′
A′

=
⊗

A∈A βLA ;

4. for (βL′
A′
⊗ νG)-almost every ((λα), (gA)) ∈ σ(L′A′)×G,

χL′
A′

((λα)α∈A′ , (gA)A∈A) =
∏
A∈A

χLA((λα)α∈A, gA).

Now we focus on property (RL). See Subsection 2.5 for the notation concerning topological tensor
products.

Lemma 4.2. Assume that A = {A1, A2}. Then, for every m ∈ L1(βL′
A′

) and for every µ ∈ M1(GA2
) there

is mµ ∈ L1(βLA1
) such that ∫

GA2

KL′
A′ ,1

(m)( · , g2) dµ(g2) = KLA1
,1(mµ).

Proof. Observe first that

L1(βL′
A′

) ∼= L1(βLA1
;L1(βLA2

)) ∼= L1(βLA1
)⊗̂L1(βLA2

)

thanks to Proposition 4.1 and [67, Theorem 46.2]. Therefore, [67, Theorem 45.1] implies that there are
(cj) ∈ `1 and two bounded sequences (mj,1), (mj,2) in L1(βLA1

) and L1(βLA2
), respectively, such that

m =
∑
j∈N

cj(mj,1 ⊗mj,2)

in L1(βL′
A′

). Hence, it suffices to define

mµ :=
∑
j∈N

cj

∫
G2

KLA2
,1(mj,2) dµmj,1.

Corollary 4.3. Assume that A = {A1, A2}. Take f ∈ L1
L′
A′

(G) and h ∈ L∞(GA2). Then,∫
GA2

f( · , g2)h(g2) dνGA2
(g2) ∈ L1

LA1
(GA1).

In addition, f( · , g2) ∈ L1
LA1

(GA1
) for almost every g2 ∈ GA2

.

Proof. 1. Assume first that m :=ML′
A′

(K) ∈ L∞(σ(L′A′)) is compactly supported. Let (Kj) be an increasing
sequence of compact subsets of GA2

whose union is GA2
. Then,

lim
j→∞

∫
Kj

f( · , g2)h(g2) dνGA2
(g2) =

∫
GA2

f( · , g2)h(g2) dνGA2
(g2)

in L1(GA1
). The first assertion follows from Lemma 4.2 and Proposition 3.14, while the second assertion

follows directly from Lemma 4.2.
2. Now, take τ ∈ C∞c (σ(LA)) such that τ(0) = 1, and define τj := τ(2−j · ) for every j ∈ N. Then, 1

above implies that ∫
G2

KL′
A′

(mτj)( · , g2)h(g2) dνGA2
(g2) ∈ L1

LA1
(GA1)

and that KL′
A′

(mτj)( · , g2) ∈ L1
LA1

(GA1
) for every j ∈ N and for almost every g2 ∈ GA2

. Since KL′
A′

(mτj) =

f ∗ KL′
A′

(τj) converges to f in L1(GA′), both assertions follow from Proposition 3.14.

14



Theorem 4.4. If LA satisfies property (RL) for every A ∈ A, then L′A′ satisfies property (RL).

Proof. 1. Proceeding by induction, we may reduce to the case in which A = {A1, A2}. In order to simplify the
notation, we shall write Gj instead of GAj for j = 1, 2. Now, take m ∈ L∞(βL′

A′
) such that KL′

A′
(m) ∈ L1(G).

Then, Corollary 3.25, Proposition 4.1 and Fubini’s theorem imply that

MLA1
[g1 7→ MLA2

[KL′
A′

(m)(g1, · )](λ2)](λ1) = m(λ1, λ2)

for βLA1
-almost every λ1 ∈ σ(LA1

) and for βLA2
-almost every λ2 ∈ σ(LA2

). Observe that Lemma 4.2

implies that KL′
A′

(m)(g1, · ) ∈ L1
LA2

(G2) for almost every g1 ∈ G1; in addition, observe that, by assumption,

MLA2
induces a continuous linear mapping from L1

LA2
(G2) into C0(σ(LA2)). Therefore, the mapping g1 7→

MLA2
[KL′

A′
(m)(g1, · )] defines an element of L1(G1;C0(σ(LA2))).

2. Let us prove that, for every µ ∈M1(σ(LA2)), the mapping

g1 7→ (µMLA2
)[KL′

A′
(m)(g1, · )]

belongs to L1
LA1

(G1). Indeed, the preceding considerations show that µMLA2
defines an element of L1

LA2
(G2)′,

so that it can be represented by an element of L∞(G2); hence, the assertion follows from Corollary 4.3.
Now, let us prove that the mapping

M1(σ(LA1)) 3 µ 7→
[
g1 7→ (µMLA2

)[KL′
A′

(m)(g1, · )]
]
∈ L1

LA1
(G1)

is weakly continuous on the bounded subsets of M1(σ(LA1
)). Indeed, [67, Theorem 46.2] implies that

L1(G1;C0(σ(LA2
))) ∼= L1(G1)⊗̂C0(σ(LA2

)), so that [67, Theorem 45.1] implies that there are (cj) ∈ `1

and two bounded sequences (fj), (ϕj) in L1(G1) and C0(σ(LA2
)), respectively, such that[

g1 7→ MLA2
[KL′

A′
(m)(g1, · )]

]
=
∑
j∈N

cj(fj ⊗ ϕj)

in L1(G1;C0(σ(LA2
))). Since the series ∑

j∈N
cj 〈µ, ϕj〉 fj

converges uniformly to g1 7→ (µMLA2
)[KL′

A′
(m)(g1, · )] as µ stays in a bounded subset of M1(σ(LA2

)), the
assertion follows.

3. Observe that, by assumption, MLA1
induces a continuous linear mapping from L1

LA1
(G1) into

C0(σ(LA1)); hence, 2 above implies that the mapping

σ(LA2
) 3 λ2 7→ MLA1

(
g1 7→ MLA2

[KL′
A′

(m)(g1, · )](λ2)
)
∈ C0(σ(LA1

))

is continuous. Therefore, the mapping

σ(L′A′) 3 (λ1, λ2) 7→ MLA1

(
g1 7→ MLA2

[KL′
A′

(m)(g1, · )](λ2)
)

(λ1) ∈ C

is continuous, so that it extends to a continuous mapping m0 on EL′
A′

by [15, Corollary to Theorem 2 of

Chapter IX, § 4, No. 2]. Now, 1 implies that m0(λ1, λ2) = m(λ1, λ2) for βLA1
-almost every λ1 ∈ σ(LA1) and

for βLA2
-almost every λ2 ∈ σ(LA2

). Since both m and m0 are βL′
A′

-measurable, Tonelli’s theorem implies
that m = m0 βL′

A′
-almost everywhere.

Now, we focus on property (S).

Lemma 4.5. Assume that A = {A1, A2}. Take ϕ ∈ SL′
A′

(GA′), and take T ∈ S ′(GA2
). Then,

[g1 7→ 〈T, ϕ(g1, · )〉] ∈ SLA1
(GA1

).

The proof is similar to that of Corollary 4.3,with the only difference that here one has to approximate T
in S ′(GA2

) by a sequence of measures with compact support.

Theorem 4.6. If LA satisfies property (S) for every A ∈ A, then L′A′ satisfies property (S).
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Proof. 1. Proceeding by induction, we may reduce to the case in which A = {A1, A2}. In order to simplify the
notation, we shall write Gj instead of GAj , for j = 1, 2. Now, take m ∈ L∞(βL′

A′
) such that KL′

A′
(m) ∈ S(G).

Then, Corollary 3.25, Proposition 4.1 and Fubini’s theorem imply that

MLA1
[g1 7→ MLA2

[KL′
A′

(m)(g1, · )](λ2)](λ1) = m(λ1, λ2)

for βLA1
-almost every λ1 ∈ σ(LA1

) and for βLA2
-almost every λ2 ∈ σ(LA2

). Observe that Lemma 4.5 implies
that KL′

A′
(m)(g1, · ) ∈ SLA2

(G2) for every g1 ∈ G1, and that by assumption MLA2
induces a continuous

linear mapping from SLA2
(G2) onto S(σ(LA2)). Therefore, the map g1 7→ MLA2

[KL′
A′

(m)(g1, · )] defines an

element of S(G1;S(σ(LA2))).
2. Let us prove that the mapping g1 7→ MLA2

[KL′
A′

(m)(g1, · )] induces an element of SLA1
(G1)⊗̂S(σ(LA2

)).

Take T ∈ S(σ(LA2))′; then, Lemma 4.5 implies that

[g1 7→ (TMLA2
)[KL′

A′
(m)(g1, · )]] ∈ SLA1

(G1)

since TMLA2
defines an element of SLA2

(G2)′, which can be extended to an element of S ′(G2). Next, observe
that [67, Proposition 50.4] implies that

SLA1
(G1)⊗̂S(σ(LA2

)) ∼= L(S(σ(LA2
))′;SLA1

(G1))

since S(σ(LA2
)) is nuclear thanks to [67, Proposition 50.1]. Now, the mapping

g1 7→ MLA2
[KL′

A′
(m)(g1, · )]

belongs to S(G1;S(σ(LA2
))); arguing as above, we see that this latter space is the canonical image of

S(G1)⊗̂S(σ(LA2
)) ∼= L(S(σ(LA2

))′;S(G1)), so that the preceding arguments imply our claim.
3. Now, by assumption MLA1

induces a continuous linear map from SLA1
(G1) into S(σ(LA1

)), so that
we have the continuous linear mapping

MLA1
⊗̂IS(σ(LA2

)) : SLA1
(G1)⊗̂S(σ(LA2

))→ S(σ(LA1
))⊗̂S(σ(LA2

));

in addition, for every T ∈ S(σ(LA2))′ and for every λ1 ∈ σ(LA1),〈
T,
(
MLA1

⊗̂IS(σ(LA2
))

)
(g1 7→ MLA2

[KL′
A′

(m)(g1, · )])(λ1)
〉

=MLA1
[g1 7→ TMLA2

[KL′
A′

(m)(g1, · )]](λ1)

(reason as in 2). Choosing T = δλ2 for λ2 ∈ σ(LA2), and taking into account Proposition 3.12, we see that
the mapping

σ(L′A′) 3 (λ1, λ2) 7→ MLA1
(g1 7→ MLA2

[KL′
A′

(m)(g1, · )](λ2))(λ1)

extends to an element m0 of S(σ(L′A′)). Now, 1 implies that m0(λ1, λ2) = m(λ1, λ2) for βLA1
-almost every

λ1 ∈ σ(LA1
) and for βLA2

-almost every λ2 ∈ σ(LA2
). Since both m and m0 are βL′

A′
-measurable, Tonelli’s

theorem implies that m = m0 βL′
A′

-almost everywhere. The assertion follows.

5 Image Families

In this section we fix a Rockland family LA on a homogeneous group G; we consider LA as ‘known’ and we
study an ‘image family’ P (LA), where P : RA → RΓ is a polynomial mapping with homogeneous components,
and Γ is a finite set. We shall investigate what we can say about P (LA) on the base of our knowledge of LA.

Proposition 5.1. The following statements are equivalent:

1. P (LA) is a Rockland family;

2. the restriction of P to σ(LA) is proper;

In addition, if P (LA) is a Rockland family, then:

(i) µP (LA) = P∗(µLA) and σ(P (LA)) = P (σ(LA));

(ii) a βP (LA)-measurable function m : σ(P (LA))→ C admits a kernel if and only if m ◦ P admits a kernel;
in this case,

KP (LA)(m) = KLA(m ◦ P );

(iii) βP (LA) = P∗(βLA).
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Notice that saying that P is proper on σ(LA) amounts to saying that P (λ) 6= 0 for every non-zero
λ ∈ σ(LA) (cf. the proof of [34, Lemma 1.4]).

Proof. By spectral theory, µP (LA) = P∗(µLA) and σ(P (LA)) = P (σ(LA)), without further assumptions on
P (LA). If P (LA) is a Rockland family, then also (ii) holds by spectral theory again; as a consequence,
also (iii) holds in this case. Then, we are reduced to proving the equivalence of 1 and 2.

1 =⇒ 2. This follows from [48, Lemma 3.5.1].
2 =⇒ 1. Notice first that the union of the families LA and P (LA) is clearly Rockland, so that the

P (Lα) are essentially self-adjoint on C∞c (G) with commuting closures. Endow RA with dilations extending
those of σ(LA) and with a homogeneous norm | · |′ which is of class C∞ on G\{e}; let S be the corresponding
unit sphere. Take τ1 ∈ C∞(S) such that τ1 = 1 on a neighbourhood of σ(LA) ∩ S and such that τ1 is
supported in {x ∈ S : 2|P (x)| > minS∩σ(LA)|P |}. Then, extend τ1 to a homogeneous function of degree 0.
In addition, take τ2 ∈ C∞c (RA) so that τ2 = 1 on a neighbourhood of 0. Now, if m ∈ S(RΓ), then clearly
[τ2 + (1− τ2)τ1](m ◦ P ) ∈ S(RA), so that KP (LA)(m) ∈ S(G). The assertion follows.

Proposition 5.2. Assume that P (LA) is a Rockland family, and take a disintegration (βλ′)λ′∈σ(P (LA)) of
βLA relative to P . Then,

χP (LA)(λ
′, g) =

∫
σ(LA)

χLA(λ, g) dβλ′(λ)

for (βP (LA) ⊗ νG)-almost every (λ′, g) ∈ σ(P (LA))×G.

See Subsection 2.3 for the definition of a disintegration. Observe that the proof amounts to showing that
both sides of the asserted equality have the same integrals when multiplied by elements of C∞c (σ(LA)) ⊗
C∞c (G), which is clear.

Now, consider property (RL). Assume that LA satisfies property (RL), and take m ∈ L∞(βP (LA)) such
that KP (LA)(m) ∈ L1(G). Then, there is m̃ ∈ C0(σ(LA)) such that m ◦ P = m̃ βLA -almost everywhere. In
Section 10, we shall study this situation in a general setting, seeking conditions under which m̃ is constant
on the fibres of P in σ(LA). Since P is proper, this implies that m̃ is the composite of a continuous function
with P , at least on σ(LA). If this happens for every m, then P (LA) satisfies property (RL). Notice, however,
that sometimes it is more convenient to argue on proper subsets of the spectrum.

Property (S) is studied in a similar way, again making use of the results of Section 10.

6 Quadratic Operators on 2-Step Stratified Groups

A connected Lie group G is called 2-step nilpotent if [g, [g, g]] = 0, where g is the Lie algebra of G. The group
G is 2-step stratified if, in addition, it is simply connected and g = g1 ⊕ g2, with [g1, g1] = [g, g] = g2.

Notice that, if G is a simply connected 2-step nilpotent group, then it is ‘stratifiable,’ that is, for every
algebraic complement g1 of g2 := [g, g], the decomposition g = g1 ⊕ g2 turns G into a stratified group.
Nevertheless, G may be endowed with many different structures of a stratified group; when we speak of a
2-step stratified group, we mean that an algebraic complement of [g, g] is fixed.

A 2-step stratified group is endowed with the canonical dilations, that is r · (X+Y ) = rX+ r2Y for every
r > 0, for every X ∈ g1 and for every Y ∈ g2. Thus, G becomes a homogeneous group.

Definition 6.1. Let G be a 2-step stratified group. Then, for every ω ∈ g∗2 we define

Bω : g1 × g1 3 (X,Y ) 7→ 〈ω, [X,Y ]〉 .

We say that G is an MW+ group if Bω is non-degenerate for some non-zero ω ∈ g∗2 (cf. [57] and also [58]).
A Heisenberg group is an MW+ group with one-dimensional centre.

Definition 6.2. Take d ∈ N∗, and let g be the free Lie algebra on d generators. Then, the quotient g′ of g
by its ideal [g, [g, g]] is the free 2-step nilpotent Lie algebra on d generators. The simply connected Lie group
with Lie algebra g′ is called the free 2-step nilpotent Lie group on d generators.

Now, to every symmetric bilinear form q on g∗1 we can associate a differential operator on G as follows:

L := −
∑
`,`′

q(X∗` , X
∗
`′)X`X`′ ,

where (X`) is a basis of g1 with dual basis (X∗` ). As the reader may verify, L does not depend on the choice
of (X`); actually, one may prove that −L is the symmetrization of the quadratic form induced by q on g∗

(cf. [40, Theorem 4.3]).
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Lemma 6.3. Let q be a symmetric bilinear form on g∗1, and let L be the associated operator. Then, L is
formally self-adjoint if and only if q is real. In addition, L is formally self-adjoint and hypoelliptic if and only
if q is non-degenerate and either positive or negative.

Proof. The first assertion follows from the fact that the formal adjoint of L is associated with q. The last
assertion then follows from [41].

Next, we show how to put L in a particularly convenient form according to the chosen ω ∈ g∗2.

Definition 6.4. Let V be a vector space and Φ a bilinear form on V . Then, define

sΦ : V 3 v 7→ Φ(v, · ) ∈ V ∗ and dΦ : V 3 v 7→ Φ( · , v) ∈ V ∗.

If Φ is non-degenerate, that is, if dΦ (or, equivalently, sΦ) is an isomorphism, then denote by Φ̂ the inverse
of Φ, that is, Φ ◦ (s−1

Φ × d−1
Φ ).

Notice that any algebraic complement of the radical of a skew-symmetric bilinear form on a finite-
dimensional vector space is symplectic. Therefore, by [1, Corollary 5.6.3] we deduce the following result.

Proposition 6.5. Let V be a finite-dimensional vector space over R, let σ be a skew-symmetric bilinear
form on V , and let q be a positive, non-degenerate bilinear form on V . Then, there are a q-orthogonal basis
(vj)j=1,...,m of V and a positive integer n 6 m

2 such that the following hold:

• q(vj , vj) = q(vn+j , vn+j) > 0 for every j = 1, . . . , n;

• q(vj , vj) = 1 for every j = 2n+ 1, . . . ,m;

• for every j, k = 1, . . . ,m,

σ(vj , vk) =


1 if j ∈ {1, . . . , n} and k = n+ j;

−1 if j ∈ {n+ 1, . . . , 2n} and k = j − n;

0 otherwise.

Observe that q(vj , vj)
−1 is the eigenvalue of |d−1

q ◦ dσ| corresponding to vj (j = 1, . . . , 2n), where the
absolute value is computed with respect to q.

7 Plancherel Measure and Integral Kernel

In this section, G denotes a 2-step stratified group of dimension n which does not satisfy the MW+ condition,
q a symmetric bilinear form on g∗1, and (T1, . . . , Tn2

) a basis of g2. We shall denote by L the sub-Laplacian
induced by q and we shall assume that LA := (L, (−iTk)k=1,...,n2) is a Rockland family, that is, that L is
a hypoelliptic sub-Laplacian, up to a sign. Indeed, if π0 is the projection of G onto its abelianization, then
dπ0(LA) is a Rockland family by Proposition 3.12, so that F(dπ0(LA)) vanishes only at 0. Since dπ0(Tk) = 0
for every k = 1, . . . , n2, this implies that q is non-degenerate and either positive or negative; hence, L is a
hypoelliptic sub-Laplacian, up to a sign. We may then assume that q is positive and non-degenerate.

We shall endow g with a scalar product for which g1 and g2 are orthogonal, and which induces q̂ on g1.
Then, we may endow g with the translation-invariant measure Hn (the n-dimensional Hausdorff measure);
up to a normalization, we may then assume that (expG)∗(Hn) is the chosen Haar measure on G. We shall
endow g∗2 with the scalar product induced by that of g2, and then with the corresponding Lebesgue measure.

Definition 7.1. Define
Jq,ω := dq ◦ dBω : g1 → g1

for every ω ∈ g∗2, and define d := minω∈g∗2 dim ker dBω , so that d > 0 since G is not an MW+ group. We

denote by W the set of ω ∈ g∗2 such that dim ker dBω > d. Define n1 := 1
2 (dim g1 − d), and observe that

n1 = 0 if and only if G is abelian.

Lemma 7.2. The set W is an algebraic variety.

Proof. Define pω so that Xdpω(X) is the characteristic polynomial of −J2
q,ω. Then, W is the zero locus of

the polynomial mapping ω 7→ pω(0), so that it is an algebraic variety.
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Proposition 7.3. Assume that n2 > 0. Then, there are a non-empty Zariski open subset Ω of g∗2 \W , a
positive integer h, and three continuous mappings

µ : g∗2 → Rh+ P : Ω→ L(g1)h P0 : g∗2 \W → L(g1)

such that the following hold:

• µ is homogeneous of degree 1, while P and P0 are homogeneous of degree 0;

• µ is analytic on Ω and µ(Ω) ⊆ (R∗+)h, while P and P0 are analytic on their domains;

• µh(ω) 6= µh′(ω) for every h, h′ = 1, . . . , h such that h 6= h′ and for every ω ∈ Ω;

• for every h = 0, . . . , h and for every ω ∈ Ω (for every ω ∈ g∗2 \W , if h = 0), Ph(ω) is a Bω- and
q̂-self-adjoint projector of g1;

• if h = 1, . . . , h, then TrPh is constant;

•
∑h
h=0 Ph(ω) = Ig1

and
∑h
h=1 µh(ω)Ph(ω) = |Jq,ω| for every ω ∈ Ω;

• P0(ω)(g1) = ker dBω for every ω ∈ g∗2 \W .

This result is a consequence of [52, Lemmas 4 and 5]. Make use of the arguments of [45, § 1.3–4 and § 5.1
of Chapter II] to prove the analyticity of P0.

Definition 7.4. We define Ω, h, µ, P , and P0 as in Proposition 7.3. In addition, we define n1 = (n1,h)h=1,...,h

so that n1,h is the constant value of TrPh for every h = 1, . . . , h. We define 1h as the element of Rh whose
components are all equal to 1.

We shall often identify µ(ω) with the linear mapping

Rh 3 λ 7→
h∑
h=1

µh(ω)λh ∈ R

for every ω ∈ g∗2.

With the above notation, we have µ(ω)(n1) =
∑h
h=1 µh(ω)n1,h. Observe that the index 1 in n1 refers to

the first layer g1, just as the index 2 in n2 refers to the second layer g2.
Recall that a subset of a (finite-dimensional) affine space V is semialgebraic if it belongs to the algebra

of subsets of V generated by the sets of the form P−1(]0,∞[), where P is a polynomial on V . A mapping
between two semialgebraic sets is semialgebraic if its graph is semialgebraic. See [22] for a more detailed
exposition of the basic theory of semialgebraic sets and semialgebraic mappings.

Corollary 7.5. The function ω 7→ µ(ω)(n1) is a semialgebraic norm on g∗2 which is analytic on g∗2 \W .

Proof. Observe that, denoting by ‖ · ‖1 the trace-norm,

2µ(ω)(n1) = ‖Jq,ω‖1 = ‖Jq,ω + P0(ω)‖1 − d

for every ω ∈ g∗2, and that the linear mapping ω 7→ Jq,ω is one-to-one since G is stratified. Therefore, all
assertions follow except for semialgebraicity. Now, denote by C the cone of positive endomorphisms of g1, and
observe that C is semialgebraic since it is the image of the polynomial mapping L(g1) 3 T 7→ T ∗T ∈ L(g1)
(cf. [22, Corollary 2.4]). In addition, the mapping C 3 T 7→

√
T ∈ C is semialgebraic, since its graph is

the set of (T1, T2) ∈ C × C which solve the polynomial equation T1 − T 2
2 = 0. Therefore, the function

L(g1) 3 T 7→ ‖T‖1 = Tr(
√
T ∗T ) is semialgebraic, since it is the composite of semialgebraic mappings (cf. [22,

Corollary 2.9]). Hence, the function ω 7→ µ(ω)(n1) is semialgebraic, since it is the composite of the linear
mapping ω 7→ Jq,ω and the semialgebraic function ‖ · ‖1 (cf. [22, Corollary 2.9] again).

Definition 7.6. By an abuse of notation, we shall denote by (x, t) the elements of G, where x ∈ g1 and
t ∈ g2, thus identifying (x, t) with expG(x, t). For every x ∈ g1 and for every ω ∈ g∗2 \W , we define

x0(ω) := P0(ω)(x),

while, for every ω ∈ Ω and for every h = 1, . . . , h,

xh(ω) :=
√
µh(ω)Ph(ω)(x).

By an abuse of notation, we shall write x(ω) instead of
∑h
h=1 xh(ω) =

√
|Jq,ω|(x), so that |x(ω)|2 =∑h

h=1|xh(ω)|2 = 〈|Jq,ω|x|x〉.
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Proposition 7.7. The mapping
g1 × Ω 3 (x, ω) 7→ x(ω)

extends uniquely to a continuous semialgebraic function on g1 × g∗2 which is analytic on g1 × (g∗2 \W ).

Proof. Observe that, for every ω ∈ g∗2, −J2
q,ω = J∗q,ωJq,ω is positive, and that

−J2
q,ω + P0(ω)

is positive and non-degenerate as long as ω 6∈W . Therefore, the mapping

ω 7→ 4

√
−J2

q,ω = 4

√
−J2

q,ω + P0(ω)− P0(ω) ∈ L(g1)

is continuous and semialgebraic on g∗2 and analytic on g∗2 \W thanks to [18, Proposition 10 of Chapter I, §
4, No. 8] (argue as in the proof of Corollary 7.5).9 The conclusion follows, since

4

√
−J2

q,ω(x) =

h∑
h=1

xh(ω)

for every ω ∈ Ω and for every x ∈ g1.

Definition 7.8. Define Gω, for every ω ∈ g∗2, as the quotient of G by its normal subgroup expG(kerω).
Then, G0 is the abelianization of G, and we identify it with g1. If ω 6= 0, we shall identify Gω with g1⊕R,

endowed with the product

(x1, t1)(x2, t2) :=

(
x1 + x2, t1 + t2 +

1

2
Bω(x1, x2)

)
for every x1, x2 ∈ g1 and for every t1, t2 ∈ R. Hence,

πω(x, t) = (x, ω(t))

for every (x, t) ∈ G.

Definition 7.9. For every ω ∈ g∗2 \W , define |Pf(ω)| :=
∏h
h=1 µh(ω)n1,h , the Pfaffian of ω (cf. [3]).

We are now in position to find the Plancherel measure and the integral kernel associated with LA. This
is done by means of the explicit knowledge of the Plancherel and inversion formulae of G (cf. [3]).

Let us first describe the Plancherel measure on Ĝ; we follow the construction of the Plancherel measure
of [3] as in [48, 4.4.1]. Take ω ∈ Ω and τ ∈ P0(ω)(g1). Then, Proposition 6.5 shows that there is a basis
(Xω,1, . . . , Xω,n1

, Yω,1, . . . , Yω,n1
, U1, . . . , Ud) of g1 such that (U1, . . . , Ud) is a basis of the radical P0(ω)(g1)

of Bω, such that Bω(Xω,h, Yω,k) = δh,k and Bω(Xω,h, Xω,k) = Bω(Yω,h, Yω,k) = 0 for every h, k = 1, . . . , n1,
and such that

L = −
n1∑
k=1

µ̃k(ω)(X2
ω,k + Y 2

ω,k)−
d∑

h=1

U2
h ,

where µ̃1(ω), . . . , µ̃n1(ω) are the eigenvalues µh(ω), h = 1, . . . , h, each repeated n1,h-times. Define H as the

space of holomorphic functions in L2(Cn1 , ν), where ν := e−2| · |2 ·H2n1 . Define πω,τ as the unique continuous
unitary representation of G in the hilbertian space H such that

dπω,τ (Xω,k + iYω,k)f(z) = 2zkf(z) and dπω,τ (Xω,k − iYω,k)f(z) = −∂zkf(z),

for every k = 1, . . . , n1, for every f ∈ C∞(πω,τ ), and for every z ∈ Cn1 , while

dπω,τ (T`) = ω(T`)IH and dπω,τ (Uh) = 〈τ |Uh〉 IH

for every ` = 1, . . . , n2 and for every h = 1, . . . , d, where IH is the identity of H. Thus, πω,τ is a version
of the ‘Bargmann(–Fock)’ representation, cf. [44]; in particular, it is irreducible. Let Σ be the (closed)
subset

⋃
ω∈Ω[{ω}×P0(ω)(g1)] of Ω× g1, and let νΣ be the (positive Radon) measure 1

(2π)n1+n2

∫
Ω
|Pf(ω)|δω⊗

9For what concerns continuity, just observe that 4
√
· is continuous on the cone of positive endomorphisms of g1, which is the

closure of the cone of non-degenerate positive endomorphisms of g1, as in [42, p. 85].

20



(χP0(ω)(g1) · Hd) dω on Σ. Then, the mapping p : Σ 3 (ω, τ) 7→ [πω,τ ] ∈ Ĝ is one-to-one (but not onto), and
the Plancherel measure νĜ is p∗(νΣ) (cf. [3, Section 2]). In particular, for every f ∈ L1(G) ∩ L2(G),10

‖f‖22 =
1

(2π)n1+n2

∫
Ω

∫
P0(ω)(g1)

‖πω,τ (f)‖22 dτ |Pf(ω)|dω.

Now, fix (ω, τ) ∈ Σ, and define wγ′(z) :=
√

2n1+2|γ′|

πn1γ′! z
γ′ for every z ∈ Cn1 and for every γ′ ∈ Nn1 , so that

(wγ′)γ′∈Nn1 is an orthonormal basis of H (cf. [44]), and

dπω,τ (L)wγ′ = (|τ |2 + µ̃(ω)(1n1
+ 2γ′))wγ′

for every γ′ ∈ Nn1 . Therefore, the preceding considerations and the definitions of µ(ω) and µ̃(ω) show that
there is a commutative family (pω,γ)γ∈Nh of self-adjoint projectors of H such that IH =

∑
γ pω,γ , such that

Tr(pω,γ) =
(
n1+γ−1h

γ

)
, and such that

dπω,τ (L)pω,γ = (|τ |2 + µ(ω)(n1 + 2γ))pω,γ

for every γ ∈ Nh.
We shall now introduce some notation to simplify the forthcoming formulae.

Definition 7.10. For every m, γ ∈ N, we denote by Λmγ (X) =
∑γ
j=0

(
γ+m
γ−j

) (−X)j

j! the γ-th Laguerre polyno-
mial of order m. Define, in addition,

Φd : R+ 3 x 7→ Γ

(
d

2

)
J d

2−1(x)(
x
2

) d
2−1

= Γ

(
d

2

)∑
k∈N

(−1)kx2k

4kk!Γ
(
k + d

2

) ,
where J d

2−1 is the Bessel function (of the first kind) of order d
2 − 1.

Then,

Tr(πω,τ (x, t)∗pω,γ) = e−
1
4 |x(ω)|2−i〈τ |x0(ω)〉−iω(t)

h∏
h=1

Λ
n1,h−1
γh

(
1

2
|xh(ω)|2

)
by [44, Proposition 2] and [27, 10.12 (41)], while

−
∫
∂B(0,1)∩P0(ω)(g1)

e−i〈τ |x0(ω)〉 dHd−1(τ) = Γ

(
d

2

)
J d

2−1 (|x0(ω)|)(
|x0(ω)|

2

) d
2−1

= Φd(|x0(ω)|).

The following proposition is a consequence of the preceding considerations and of [49, Proposition 3.7].

Proposition 7.11. For every ϕ ∈ Cc(σ(LA)),∫
σ(LA)

ϕdβLA =
π
d
2

(2π)n1+n2+dΓ
(
d
2

) ∑
γ∈Nh

(
n1 + γ − 1h

γ

)
×

×
∫
R+×g∗2

ϕ(λ+ µ(ω)(n1 + 2γ), ω(T))|λ|
d
2−1|Pf(ω)|d(λ, ω).

In addition,

χLA((λ, ω(T)), (x, t)) =
1

cλ,ω

∑
γ∈Nh

µ(ω)(n1+2γ)<λ

(λ− µ(ω)(n1 + 2γ))
d
2−1

e−
1
4 |x(ω)|2−i〈τ |x0(ω)〉−iω(t)×

×
h∏
h=1

Λ
n1,h−1
γh

(
1

2
|xh(ω)|2

)
Φd

(√
λ− µ(ω)(n1 + 2γ)|x0(ω)|

)
(βLA ⊗ νG)-almost everywhere, where cλ,ω :=

∑
µ(ω)(n1+2γ)<λ (λ− µ(ω)(n1 + 2γ))

d
2−1

.

10Here, ‖T‖2 denotes the Hilbert–Schmidt norm of the endomorphism T of H.
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Remark 7.12. Let T ′1, . . . , T
′
n be n homogeneous elements of the centre z of g. Let us show that the study of

the family (L,−iT ′1, . . . ,−iT ′n) can be reduced to that of the families of the form considered above on suitable
2-step stratified groups.

Notice that we may assume that there is n′ ∈ {0, . . . , n} such that T ′j ∈ g2 if and only if j 6 n′; let g′′ be
the vector subspace of g generated by T ′n′+1, . . . , T

′
n, and observe that g′′ ⊆ g1 by homogeneity. Let g′1 be the

q̂-orthogonal complement of g′′ in g1; define g′ := g′1 ⊕ g2. Then, g is the direct sum of its ideals g′ and g′′.
Let G′ and G′′ be the Lie subgroups of G corresponding to g′ and g′′, and let L′ and L′′ be the sub-Laplacians
on G′ and G′′, respectively, corresponding to the restrictions of q to g′∗1 and g′′∗, respectively. By an abuse
of notation, then, L = L′ + L′′, so that the family (L,−iT ′1, . . . ,−iT ′n) is (algebraically) equivalent to the
family (L′,−iT ′1, . . . ,−iT ′n). Now, the family (−iT ′n′+1, . . . ,−iT ′n) on G′′ satisfies property (RL) by classical
Fourier analysis. Therefore, Theorem 4.4 implies that the family (L,−iT ′1, . . . ,−iT ′n) satisfies property (RL)
if the family (L′,−iT ′1, . . . ,−iT ′n′) does.11 Since this latter family is equivalent to a family of the form
(L′,−iT1, . . . ,−iTn′2) for some n′2 and for some choice of the basis T1, . . . , Tn2

of g2, our assertion follows.
Notice, however, that G′ may be an MW+ group; we shall deal with MW+ groups in a future paper.

Similar arguments apply to property (S) and the continuity of the integral kernel.

8 Property (RL)

In this section we shall present several sufficient conditions for the validity of property (RL); we keep the
notation of Section 7. First of all, we observe that the spectrum of LA is a closed convex semialgebraic
cone, thanks to Corollary 7.5 and [22, Corollary 2.9]. In addition, we can basically ignore the Laguerre
polynomials of higher order which appear in the Fourier inversion formula, thanks to (a suitable extension
of) [54, Proposition 5.4]. Indeed, with reference to the notation of Section 7, the ‘ground state,’ that is, the
first eigenvalue of dπω,τ (LA), is sufficient to cover the whole of σ(LA), as ω and τ vary. This fact leads to
significant simplifications, as the basic Lemma 8.1 shows.

We need to distinguish between the ‘full’ family LA, for which we can prove continuity of the multi-
pliers only on a dense subset of the spectrum in full generality (cf. Lemma 8.1), and the ‘partial’ family
(L, (−iT1, . . . ,−iTn′2)) for n′2 < n2, for which by means of a deeper analysis we are able to prove property
(RL) in full generality (cf. Theorem 8.5). This latter result requires to deal with Radon measures defined on
Polish spaces which are not necessarily locally compact.

Concerning the ‘full’ family LA, as we observed above, we can prove in full generality that every integrable
kernel corresponds to a multiplier which is continuous on a dense subset of the spectrum. In addition, we can
prove that property (RL) holds in the following cases: when P0 extends to a continuous function on g∗2 \ {0},
for example when W = {0} or when G is the product of an MW+ group and a non-trivial abelian group
(cf. Theorem 8.2); when G is a free 2-step stratified group on an odd number of generators (cf. Theorem 8.4).
In both cases, we make use of the simplified ‘inversion formula’ for KLA which is available in this case; in the
second case, we employ the simple structure of free groups to prove that the L1 kernels are invariant under
sufficiently many linear transformations in order that the above-mentioned inversion formula give rise to a
continuous multiplier.

Lemma 8.1. Take f ∈ L1
LA(G). Then, MLA(f) has a representative which is continuous on

{(µω(n1), ω(T)) : ω ∈ g∗2} ∪ {(λ, ω(T)) : ω ∈ g∗2 \W,λ > µω(n1)}.

Proof. Fix a representative m of MLA(f), and keep the notation of the last part of Section 7. Arguing as
in [54, Proposition 5.4], we see that there is a negligible subset N1 of g∗2 such that for every ω ∈ g∗2 \N1 there
is negligible subset N2,ω of P0(ω)(g1) such that

π∗ω,τ (f) = m(dπω,τ (LA))

for every τ ∈ P0(ω)(g1) \N2,ω. Notice that we may assume that W ⊆ N1. Therefore, for every ω ∈ g∗2 \N1

and for every τ ∈ P0(ω)(g1) \N2,ω,

m(|τ |2 + µ(ω)(n1), ω(T)) =
1

Tr pω,0
Tr(m(dπω,τ (LA))pω,0)

=

∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)−iτ(x0(ω)) d(x, t).

11Actually, it is easily proved that also the converse holds, that is, that the family (L′,−iT ′1, . . . ,−iT ′n′ ) satisfies property
(RL) if the family (L,−iT ′1, . . . ,−iT ′n) does.

22



Now, for every ω ∈ g∗2 \N1 there is negligible subset N3,ω of R∗+ such that, for every λ ∈ R∗+ \N3,ω, we have

Hd−1
(
∂BP0(ω)(g1)

(
0,
√
λ
)
∩N2,ω

)
= 0. Therefore, for every ω ∈ g∗2 \N1 and for every λ ∈ R∗+ \N3,ω,

m(λ+ µ(ω)(n1), ω(T)) = −
∫
∂B(0,

√
λ)

∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)−iτ(x0(ω)) d(x, t) dHd−1(τ)

=

∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)Φd

(√
λ|x0(ω)|

)
d(x, t).

Now, the mapping

(λ, ω) 7→
∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)Φd

(√
λ|x0(ω)|

)
d(x, t)

is continuous on [R+ × (g∗2 \W )] ∪ [{0} × g∗2] by Proposition 7.7, so that by means of Tonelli’s theorem we
see that it induces a representative of m which satisfies the conditions of the statement.

Theorem 8.2. Assume that P0 can be extended to a continuous function on g∗2 \ {0}. Then, LA satisfies
property (RL).

Notice that, by polarization, P0 has a continuous extension to g∗2\{0} if and only if |P0(x)| has a continuous
extension to g∗2 \ {0} for every x ∈ g1.

In addition, observe that the hypotheses of the proposition hold in the following situations:

• when W = {0}, for example when G is the free 2-step nilpotent group on three generators;

• when P0 is constant on g∗2 \W , for example when G = G′ × Rd for some MW+ group G′, such as a
product of Heisenberg groups.

Proof. 1. Keep the notation of the proof of Lemma 8.1. Assume first that n2 = 1, so that W = {0}. In
addition, ker dσω = ker dσ−ω for every ω ∈ g∗2, so that P0 is constant on g∗2 \ {0}. The computations of the
proof of Lemma 8.1 then lead to the conclusion.

2. Denote by P̃0 the continuous extension of P0 to g∗2 \ {0}; observe that P̃0(ω) is a self-adjoint projector
of g1 of rank d for every non-zero ω ∈ g∗2. Take f ∈ L1

LA(G) and define, for every non-zero ω ∈ g∗2 and for
every λ > 0,

m(µ(ω)(n1) + λ, ω(T)) :=

∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)Φd

(√
λ|P̃0(ω)(x)|

)
d(x, t),

so that f = KLA(m) as in the proof of Lemma 8.1. Then, m is clearly continuous con σ(LA) \ (R× {0}n2),
and m(µ(rω)(n1) + λ, rω(T)) converges to∫

G

f(x, t)Φd

(√
λ|P̃0(ω)(x)|

)
d(x, t)

as r → 0+, uniformly as ω runs through the unit sphere S of g∗2. Therefore, it will suffice to prove that the
above integrals do not depend on ω ∈ S for every λ > 0. Indeed, Proposition 3.12 implies that, for every
ω ∈ S (cf. Definition 7.8),

(πω)∗(f) = Kdπω(LA)(m).

Now, 1 above implies that the family dπω(LA) satisfies property (RL). Then, Proposition 3.12 implies that

(π0)∗(f) ∈ L1
dπ0(LA)(G0);

in addition, dπ0(LA) is identified with (∆, 0, . . . , 0), where ∆ is the (positive) Laplacian associated with the
scalar product q̂ on g1. Then,∫

G

f(x, t)Φd

(√
λ|P̃0(ω)(x)|

)
d(x, t) =

∫
g1

(π0)∗(f)(x)Φd

(√
λ|P̃0(ω)(x)|

)
dx,

whence the assertion since (π0)∗(f) is rotationally invariant.

Remark 8.3. Let G be H1 ×R, where H1 is the three-dimensional Heisenberg group. If L is the standard
sub-Laplacian on H1, T is a basis of the centre of the Lie algebra of H1, and ∆ is the (positive) Laplacian on
R, then (L+ ∆, iT ) satisfies property (RL) by Theorem 8.2, but it is easily seen that its integral kernel does
not admit any continuous representatives (cf. Proposition 7.11).

When G is a free group, we can remove the assumption that P0 has a continuous extension.
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Theorem 8.4. Assume that G is a free 2-step stratified group on an odd number of generators. Then, LA
satisfies property (RL).

Proof. Take f ∈ L1
LA(G); by Lemma 8.1, MLA(f) has a representative m which is continuous on σ(LA) \

(R×W ). Now, (cf. Definition 7.8)

(πω)∗(f)(x, t) =

∫
ω(t′)=t

f(x, t′) dt′

for almost every (x, t) ∈ Gω. Now, observe that dπω(LA) is invariant under Then, Proposition 3.12 implies
that (πω)∗(f) ∈ L1

dπω(LA) for every ω ∈ g∗2 \W . In particular, observe that, if U is an isometry of g1 which

restricts to the identity on (ker dBω )⊥, then U × IR is an automorphism of the Lie group Gω which leaves
dπω(LA) invariant, hence also (πω)∗(f).

Now, take ω ∈W and an isometry U of Gω which restricts to the identity on (ker dBω )⊥. Since dim ker dBω
is odd, there must be some v ∈ ker dBω such that U · v = ±v. Let V be the orthogonal complement of Rv in
ker dBω , so that V is U -invariant. Now, let σV be a standard symplectic form on the hilbertian space V ,12

and define ωp, for every p ∈ N, so that
Bωp = Bω + 2−pσV ;

this is possible since G is a free 2-step stratified group, so that {Bω′ : ω′ ∈ g∗2} is the set of all skew-symmetric
bilinear forms on g1. Then, ωp belongs to g∗2 \W and converges to ω. In addition, (πωp)∗(f) is U -invariant
thanks to Proposition 3.12. Now, it is easily seen that (πωp)∗(f) converges to (πω)∗(f) in L1(g1⊕R), so that
(πω)∗(f) is U -invariant.

Then, taking into account the fact that the limit points of P0(ω′) as ω′ → ω are self-adjoint projectors of
g1 onto some subspace of ker dBω , as well as the arbitrariness of ω, we see that the continuous mapping

m1 : R+ × (g∗2 \W ) 3 (λ, ω) 7→
∫
G

f(x, t)e−
1
4 |x(ω)|2−iω(t)Φ1

(√
λ|x0(ω)|

)
d(x, t),

extends to a continuous function on g∗2 × R+. Now, clearly m(λ, ω(T)) = m1(λ − µω(n1), ω) for every
(λ, ω(T)) ∈ σ(LA); the assertion follows.

Theorem 8.5. Take n′2 < n2. Then, the family (L, (−iTj)j=1,...,n′2
) satisfies property (RL).

Proof. Define L′A′ = (L, (−iTj)j=1,...,n′2
), and let L : σ(LA)→ σ(L′A′) be the unique linear mapping such that

L′A′ = L(LA). Until the end of the proof, we shall identify g∗2 with Rn2 by means of the mapping ω 7→ ω(T).
In addition, define X := (σ(LA) \W ) ∪ ∂σ(LA), so that X is a Polish space by [15, Theorem 1 of Chapter
IX, § 6, No. 1]. Let β be the (Radon) measure induced by βLA on X, so that Supp (β) = X. Let L′ be
the restriction of L to X. Since σ(LA) is a convex cone by Corollary 7.5 and since W is βLA -negligible,
Proposition 10.3 implies that β is L′-connected.

Now, Proposition 10.4 implies that β has a disintegration (βλ′)λ′∈σ(L′
A′ )

such that βλ′ is equivalent to

χL′−1(λ′) · Hn2−n′2 for βL′
A′

-almost every λ′ ∈ σ(L′A′). Observe that L−1(λ′) ∩ σ(LA) is a convex set of

dimension n2 − n′2 for βL′
A′

-almost every λ′ ∈ σ(L′A′). In addition, W ∩ L−1(λ′) is an algebraic variety of

dimension at most n2−n′2−1 for βL′
A′

-almost every λ′ ∈ σ(L′A′), for otherwise Hn2+1(W ) would be non-zero,

which is absurd. Therefore, Supp (βλ′) = L′−1(λ′) for βL′
A′

-almost every λ′ ∈ σ(L′A′).
Now, take m0 ∈ L∞(βLA) so that KL′

A′
(m0) ∈ L1(G). Let us prove that m0 has a continuous represen-

tative. Indeed, Lemma 8.1 implies that there is a continuous function m1 on X such that m0 ◦ L′ = m1

β-almost everywhere. Hence, Proposition 10.2 implies that there is a function m2 : σ(L′A′) → C such that
m2 ◦L′ = m1. Since the mapping L : ∂σ(LA)→ σ(L′A′) is proper and onto, and since ∂σ(LA) ⊆ X, it follows
that m2 is continuous. The assertion follows (cf. [15, Corollary to Theorem 2 of Chapter IX, § 4, No. 2]).

9 Property (S)

The results of this section are basically a generalization of the techniques employed in [4, 5]; we keep the
notation of Section 7.

Theorem 9.2 applies, for example, to the free 2-step nilpotent group on three generators. Notice that we
need to impose the condition W = {0} since our methods cannot be used to infer any kind of regularity on W \
{0}; for example, in general our auxiliary functions |x(ω)|2 and P0 are not differentiable on W . Nevertheless,

12That is, choose a symplectic form σV on V so that V admits an orthonormal basis (relative to the scalar product induced
by q̂) which is also a symplectic basis (relative to σV ).
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this does not mean that property (S) cannot hold when W 6= {0}; as a matter of fact, Theorem 9.3 shows
that this happens for a product of free 2-step stratified groups on 3 generators and a suitable sub-Laplacian
thereon.

In order to simplify the notation, we define S(G,LA) := KLA(S(σ(LA))).

We begin with a lemma which will allow us to get some ‘Taylor expansions’ of functions whose kernel
transform belong to the Schwartz space, under suitable hypotheses. Its proof is modelled on a technique due
to D. Geller [35, Theorem 4.4]. We state it in a slightly more general context.

Lemma 9.1. Let L′A′ be a Rockland family on a homogeneous group G′, and let T ′1, . . . , T
′
n′ be a free family

of elements of the centre of the Lie algebra g′ of G′. Let π1 be the canonical projection of G′ onto its quotient
by the normal subgroup expG′(RT

′
1), and assume that the following hold:

• (L′A′ , iT ′1, . . . , iT ′n′) satisfies property (RL);

• dπ1(L′A′ , iT ′2, . . . , iT ′n′) satisfies property (S).

Take ϕ ∈ S(L′
A′ ,iT

′
1,...,iT

′
n′ )

(G′). Then, there are two families (ϕ̃γ)γ∈Nn′ and (ϕγ)γ∈Nn′ of elements of

S(G′,L′A′) and S(L′
A′ ,iT

′
1,...,iT

′
n′ )

(G′), respectively, such that

ϕ =
∑
|γ|<h

T′γϕ̃γ +
∑
|γ|=h

T′γϕγ

for every h ∈ N.

Proof. For every k ∈ {1, . . . , n′}, let G′k be the quotient of G′ by the normal subgroup expG′(RT
′
k). Endow

g′ with a scalar product which turns (T ′1, . . . , T
′
n′) into an orthonormal family. Then, Proposition 3.12

implies that (π1)∗(ϕ) ∈ Sdπ1(L′
A′ ,iT

′
2,...,iT

′
n′ )

(G′1), so that there is m̃1 ∈ S(σ(dπ1(L′A′ , iT ′2, . . . , iT ′n′))) such that

(π1)∗(ϕ) = Kdπ1(L′
A′ ,iT

′
2,...,iT

′
n′ )

(m̃1). If we define ϕ̃0,1 := K(L′
A′ ,iT

′
2,...,iT

′
n′ )

(m̃1), then Proposition 3.12 implies

that (π1)∗(ϕ− ϕ̃0,1) = 0. In other words,∫
R

(ϕ− ϕ̃0,1)(expG′(x+ sT ′1)) ds = 0

for every x ∈ T ′⊥1 . Identifying S(G′) with S(RT ′1;S(T ′⊥1 )) and applying a simple consequence of the classical
Hadamard’s lemma, we see that there is ϕ1 ∈ S(G′) such that

ϕ = ϕ̃0,1 + T ′1ϕ1.

Now, let us prove that ϕ1 ∈ S(L′
A′ ,iT

′
1,...,iT

′
n′ )

(G′). Indeed,

T ′1K(L′
A′ ,iT

′
2,...,iT

′
n′ )
M(L′

A′ ,iT
′
2,...,iT

′
n′ )

(ϕ1) = ϕ− ϕ̃0,1 = T ′1ϕ1.

Since clearly K(L′
A′ ,iT

′
2,...,iT

′
n′ )
M(L′

A′ ,iT
′
2,...,iT

′
n′ )

(ϕ1) ∈ L2(G′), and since T ′1 is one-to-one on L2(G′), the

assertion follows. If n′ > 2, then we can apply the same argument to ϕ̃0,1 considering the quotient
G′2: since we know that ϕ̃0,1 ∈ S(G′, (L′A′ , iT ′2, . . . , iT ′n′)), we do not need to impose the condition that
dπ2(L′A′ , iT ′3, . . . , iT ′n′) satisfies property (S). Then, we obtain ϕ̃0,2 ∈ S(G′, (L′A′ , iT ′3, . . . , iT ′n′)) and ϕ2 ∈
S(L′

A′ ,iT
′
1,...,iT

′
n′ )

(G′) such that

ϕ = ϕ̃0,2 + T ′1ϕ1 + T ′2ϕ2.

Iterating this procedure, we eventually find ϕ̃0 ∈ S(G′,L′A′) and ϕ1, . . . , ϕn′ ∈ S(L′
A′ ,iT

′
1,...,iT

′
n′ )

(G′) such that

ϕ = ϕ̃0 +

n′∑
k=1

T ′kϕk.

The assertion follows proceeding inductively.

Notice that, if G is abelian and L is a Laplacian on G, then L satisfies properties (RL) and (S) (cf. [71]
for property (S)).

Theorem 9.2. Assume that W = {0}. Then, (L, (−iTk)
n′2
k=1) satisfies property (S) for every n′2 6 n2.
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Proof. Notice that Theorems 8.2 and 8.5 imply that (L, (−iTk)
n′2
k=1) satisfies property (RL). Therefore, by

means of Corollary 10.7 we see that it will suffice to prove the assertion for n′2 = n2. In addition, the abelian
case, that is, the case n2 = 0 has already been considered in the remark preceding the statement. We proceed
by induction on n2 > 1.

1. Observe first that the abelian case, Theorem 8.2, and Lemma 9.1 imply that we may find a family
(ϕ̃γ) of elements of S(G,L), and a family (ϕγ) of elements of SLA(G) such that

ϕ =
∑
|γ|<h

(−iT)γϕ̃γ +
∑
|γ|=h

(−iT)γϕγ

for every h ∈ N.
Define m̃γ :=ML(ϕ̃γ) ∈ S(σ(L)) and mγ :=MLA(ϕγ) ∈ C0(σ(LA)) for every γ. Then,

m0(λ, ω) =
∑
|γ|<h

ωγm̃γ(λ) +
∑
|γ|=h

ωγmγ(λ, ω)

for every h ∈ N and for every (λ, ω) ∈ σ(LA).
By a vector-valued version of Borel’s lemma (cf. [42, Theorem 1.2.6] for the scalar, one-dimensional case),

we see that there is m̂ ∈ C∞c (Rn2 ;S(R)) such that ∂γm̂(0) = m̃γ for every γ ∈ Nn2 . Interpret m̂ as an
element of S(σ(LA)). Reasoning on m − m̂, we may reduce to the case in which m̃γ = 0 for every γ; then,
we shall simply write m instead of m0.

2. Consider the normN : ω 7→ µ(ω)(n1) on g∗2 and let S be the associated unit sphere. Define σ(ω) := ω
N(ω)

for every ω ∈ g∗2 \ {0}. Then, the mapping (cf. Definition 7.8)

S 3 ω 7→ (πω)∗(ϕ) ∈ S(g1 ⊕R)

is of class C∞. Fix ω0 ∈ S. It is not hard to see that we may find a dilation-invariant open neighbourhood U
of ω0 and an analytic mapping ψ : U×(g1⊕R)→ R2n1×R×Rd such that, for every ω ∈ U , ψω := ψ(ω, · ) is an
isometry of g1⊕R onto R2n1×R×Rd such that ψω(P0(ω)(g1)) = {0}×Rd and ψω({0}×R) = {0}×R×{0}.
Take ω ∈ U . By transport of structure, we may put on R2n1 × R a group structure for which R2n1 × R is
isomorphic to Hn1 and which turns ψω into an isomorphism of Lie groups; here, g1 ⊕R is endowed with the
structure induced by its identification with Gω.13 Then, there is a sub-Laplacian L′ω on R2n1 ×R such that,
if T denotes the derivative along {0}×R ⊆ R2n1 ×R and ∆ is the standard (positive) Laplacian on Rd, then

d(ψω ◦ πω)(LA) = (L′ω + ∆, ω(T)T ).

Then, Proposition 3.12 and Lemma 4.5 imply that

(ψω ◦ πω)∗(ϕγ)(y, t, · ) ∈ S∆(Rd)

for every (y, t) ∈ R2n1 ×R and for every γ ∈ Nn2 . Define

ϕ̂γ : (U ∩ S)×R+ × (R2n1 ×R) 3 (ω, ξ, (y, t)) 7→ M∆((ψω ◦ πω)∗(ϕγ)(y, t, · ))(ξ),

so that ϕ̂γ(ω, · , (y, t)) ∈ S(R+) for every ω ∈ U ∩S and for every (y, t) ∈ R2n1×R, since ∆ satisfies property
(S). In addition, the mapping

ω 7→ [(y, t) 7→ (ψω ◦ πω)∗(ϕγ)(y, t, · )]

belongs to E(S ∩ U ;S(R2n1 ×R;S∆(Rd))), so that the mapping

ω 7→ [(y, t) 7→ ϕ̂γ(ω, · , (y, t))]

belongs to E(S ∩ U ;S(R2n1 ×R;S(R+))). Now, observe that the mapping

U 3 ω 7→ ψ−1
ω ∈ L(R2n1 ×R×Rd; g1 ⊕R)

is of class C∞, so that also the mapping

f : U ×Rn1 3 (ω, y) 7→ |(ψ−1
σ(ω)(y, 0, 0))(ω)|2 =

〈
|Jq,ω|(ψ−1

σ(ω)(y, 0, 0))
∣∣∣ψ−1
σ(ω)(y, 0, 0)

〉
is of class C∞, thanks to Proposition 7.7. In addition, as in the proof of Lemma 8.1, we see that

mγ(ξ +N(ω), ω(T)) =

∫
R2n1×R

ϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)−iN(ω)t d(y, t)

13Obviously, this structure depends on ω.
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for every γ ∈ Nn2 , for every ω ∈ U , and for every ξ > 0. Therefore, the preceding arguments and some
integrations by parts show that, for every p3 ∈ N,

m(ξ +N(ω), ω(T)) =
∑
|γ|=h

σ(ω(T))γ
∫
R2n1×R

(−iT )hϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)−iN(ω)t d(y, t)

=
∑
|γ|=h

ω(T)γ

N(ω)p3

∫
R2n1×R

(−iT )p3 ϕ̂γ(σ(ω), ξ, (y, t))e−
1
4 f(ω,y)−iN(ω)t d(y, t)

for every h ∈ N, for every ω ∈ U , and for every ξ > 0. Now, fix p1, p2, p3 ∈ N, and take h ∈ N. Apply Faà di
Bruno’s formula and integrate by parts p3 times in the t variable. Then, there is a constant C > 0 such that

|(∂p11 ∂p22 m)(ξ, ω(T))| 6 CN(ω)h−p2−p3(1 +N(ω))2p2

∫
R2n1×R

(1 + |(y, t)|)2p2×

× max
|γ|=h

p′=0,...,p2

|ϕ̂(p1+p3+p′)
γ (σ(ω), ξ −N(ω), (y, t))|d(y, t)

for every (ξ, ω(T)) ∈ σ(LA)◦∩(R×U), where σ(LA)
◦

denotes the interior of σ(LA). Here, |(y, t)| = |y|+
√
|t|

is a homogeneous norm on R2n1 ×R.
Now, take a compact subset K of U ∩S. Then, the properties of the ϕ̂γ imply that for every p4 ∈ N there

is a constant C ′ such that

|ϕ̂(p′)
γ (ω, ξ, (y, t))| 6 C ′

(1 + ξ)p4(1 + |(y, t)|)2p2+2n1+3

for every γ with length h, for every p′ = 0, . . . , p1 + p2 + p3, for every ω ∈ K, for every ξ > 0, and for every
(y, t) ∈ R2n1 ×R. Therefore, there is a constant C ′′ > 0 such that

|(∂p11 ∂p22 m)(ξ, ω(T))| 6 C ′′N(ω)h−p2−p3
(1 +N(ω))2p2

(1 + ξ −N(ω))p4

for every (ξ, ω(T)) ∈ σ(LA)◦ ∩ (R × U) such that σ(ω) ∈ K. By the arbitrariness of U and K, and by the
compactness of S, we see that we may take C ′′ so that the preceding estimate holds for every (ξ, ω(T)) ∈
σ(LA)◦ ∩ (R× (Rn2 \ {0})).

Now, taking h− p3 > p2 we see that ∂p11 ∂p22 m extends to a continuous function on σ(LA) which vanishes
on R+ × {0}. If N(ω) 6 1

3 , then observe that

1

3
+ ξ +N(ω) 6

2

3
+ ξ 6 1 + ξ −N(ω)

for every ξ > N(ω). On the other hand, if N(ω) > 1
3 , then take p3 = p2 + p4 + h and observe that

1 + ξ +N(ω) 6 (1 + 2N(ω))(1 + ξ −N(ω)) 6 5N(ω)(1 + ξ −N(ω))

for every ξ > N(ω). Hence, for every p4 ∈ N we may find a constant C ′′′ > 0 such that

|(∂p11 ∂p22 m)(ξ, ω(T))| 6 C ′′′
1

(1 + ξ +N(ω))p4

for every ξ > N(ω). Now, extending [65, Theorem 5 of Chapter VI] to the case of Schwartz functions in the
spirit of [5, Theorem 6.1], we see that m ∈ S(σ(LA)).

Theorem 9.3. Assume that G is the product of a finite family (Gι)ι∈I of 2-step stratified groups which do
not satisfy the MW+ condition; endow each Gι with a sub-Laplacian Lι and assume that (Lι, iTι) satisfies
property (RL) (resp. (S)) for some finite family Tι of elements of the second layer of the Lie algebra of Gι.
Define L :=

∑
ι∈I Lι (on G), and let T be a finite family of elements of the vector space generated by the Tι.

Then, the family (L,−iT ) satisfies property (RL) (resp. (S)).

Proof. Observe first that Theorems 4.4 and 4.6 imply that the family (LI , (−iTι)ι∈I) on G satisfies property
(RL) (and also property (S) if each one of the families (Lι, iTι) does). Therefore, the assertion follows from
Propositions 10.2, 10.3, 10.4, 7.11, and Corollary 10.7, since σ(LI , (−iTι)ι∈I) is a semialgebraic (hence Nash
subanalytic) closed convex cone thanks to the remark at the beginning of Section 8.
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10 Appendix: Composite Functions

We collect in this appendix a number of technical results used throughout the paper to establish properties
(RL) and (S) of ‘image families.’

10.1 Continuous Functions

In this subsection, we consider the following problem: given three Polish spaces X,Y, Z, a positive measure
µ on X, a µ-measurable mapping π : X → Y , and a function m : Y → Z such that m ◦ π equals µ-almost
everywhere a continuous function, does m equal π∗(µ)-almost everywhere a continuous function?

To this end, we introduce the following definition.

Definition 10.1. Let X be a Polish space, Y a set, µ a positive Radon measure on X, and π a mapping
from X into Y . We say that two points x, x′ of Supp (µ) are (µ, π)-connected if π(x) = π(x′) and there are
x = x1, . . . , xk = x′ ∈ π−1(π(x)) ∩ Supp (µ) such that, for every j = 1, . . . , k, for every neighbourhood Uj of
xj in Supp (µ), and for every neighbourhood Uj+1 of xj+1 in Supp (µ), the set π−1(π(Uj) ∩ π(Uj+1)) is not
µ-negligible. We say that µ is π-connected if every pair of elements of Supp (µ) having the same image under
π are (µ, π)-connected.

Observe that (µ, π)-connectedness actually depends only on the equivalence class of µ and the equivalence
relation induced by π on X. In addition, notice that, if Y is a topological space and π is open at some point
of each fibre (in the support of µ), then µ is π-connected.

We emphasize that, in the definition of (µ, π)-connectedness, the points x1, . . . , xk are fixed before con-
sidering their neighbourhoods. In other words, if for every neighbourhood U of x in Supp (µ) and for every
neighbourhood U ′ of x′ in Supp (µ) we found x = x1, . . . , xk = x′ and neighbourhoods Uj of xj in Supp (µ)
so that U = U1, U ′ = Uk and, for every j = 1, . . . , k, the set π−1(π(Uj) ∩ π(Uj+1)) were not µ-negligible,
then we would not be able to conclude that x and x′ are (µ, π)-connected.

Now we can prove our main result. Notice that, even though its hypotheses are quite restrictive, it still
gives rise to important consequences.

Proposition 10.2. Let X,Y, Z be three Polish spaces, π : X → Y a µ-measurable mapping, and µ a π-
connected positive Radon measure on X. Assume that π is µ-proper and that there is a disintegration (λy)y∈Y
of µ relative to π such that Supp (λy) ⊇ Supp (µ) ∩ π−1(y) for π∗(µ)-almost every y ∈ Y .

Take a continuous map m0 : X → Z such that there is map m1 : Y → Z such that m0(x) = (m1 ◦ π)(x)
for µ-almost every x ∈ X. Then, there is a π∗(µ)-measurable mapping m2 : Y → Z such that m0 = m2 ◦ π
pointwise on Supp (µ).

Notice that, if π is also proper, then m2 is actually continuous on π(Supp (µ)).

Proof. Observe first that there is a π∗(µ)-negligible subset N of Y such that m1◦π = m0 λy-almost everywhere
for every y ∈ Y \N . Notice that we may assume that Supp (µ) = X and that, if y ∈ Y \N , then the support
of λy contains π−1(y). Since m0 is continuous and since m1 ◦ π is constant on the support of λy, it follows
that m0 is constant on π−1(y) for every y ∈ Y \N .

Now, take y ∈ π(X) ∩ N and x1, x2 ∈ π−1(y). Let U(x1) and U(x2) be the filters of neighbourhoods of
x1 and x2, respectively. Assume first that π(U1) ∩ π(U2) is not π∗(µ)-negligible for every U1 ∈ U(x1) and for
every U2 ∈ U(x2). Take U1 ∈ U(x1) and U2 ∈ U(x2). Then, there is yU1,U2

∈ π(U1) ∩ π(U2) \ N , and then
xh,U1,U2

∈ Uh ∩ π−1(yU1,U2
) for h = 1, 2. Now, m0(x1,U1,U2

) = m0(x2,U1,U2
) for every U1 ∈ U(x1) and for

every U2 ∈ U(x2). In addition, xh,U1,U2
→ xh in X along the product filter of U(x1) and U(x2). Since m0 is

continuous, passing to the limit we see that m0(x1) = m0(x2). Since µ is π-connected, this implies that m0

is constant on P−1(y) for every y ∈ π(X). The assertion follows.

In the following proposition we give sufficient conditions in order that a measure be connected.

Proposition 10.3. Let E1, E2 be two finite-dimensional vector spaces, L : E1 → E2 a linear mapping, C a
closed convex subset of E1 and µ a positive Radon measure on E1 with support C. Take a Polish subspace X
of E1 such that µ(E1 \X) = 0, and assume that either X = C or C is a convex cone. Then, µX , that is, the
measure induced by µ on X, is L

X
-connected.

Actually, there is no need that X be a Polish space, but we did not consider Radon measures on more
general Hausdorff spaces.
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Proof. We may assume that C has non-empty interior. Then, we may find a non-empty bounded convex
open subset U of C and an convex open neighbourhood V of 0 in kerL such that U + V ⊆ C. Take r ∈]0, 1]
and x, y ∈ C ∩X such that y − x ∈ V ; take Rx > 0 so that U ⊆ B(x,Rx). Then, for every u ∈ U we have
y + r(u− x) ∈ B(y, rRx) ∩ [y, y − x+ u] ⊆ B(y, rRx) ∩C; analogously, x+ r(U − x) ⊆ B(x, rRx) ∩C. Since
L(x) = L(y), we infer that

L−1(L(B(x, rRx) ∩ C ∩X) ∩ L(B(y, rRx) ∩ C ∩X)) ⊇ [x+ r(U − x)] ∩X.

Now, x + r(U − x) is a non-empty open subset of C = Supp (µ), so that µX([x + r(U − x)] ∩ X) = µ(x +
r(U − x)) > 0. The arbitrariness of r then implies that x and y are (µ,L)-connected. The assertion then
follows easily if X = C.

Finally, assume that X 6= C, so that C is a convex cone; we may assume that C has vertex 0. Then, given
x, y ∈ C ∩X such that L(x) = L(y), we may find rx,y > 0 such that, with the above notation, y− x ∈ rx,yV .
Then, rx,yU + rx,yV ⊆ rx,yV ⊆ C, so that the above argument shows that x and y are (µ,L)-connected. The
arbitrariness of x and y then implies that µX is L

X
-connected.

Now we present a result on the disintegration of Hausdorff measures, which is particularly useful to check
the assumptions of Proposition 10.2, and is a straightforward consequence of the general coarea formula
(cf. [29, Theorem 3.2.22]). Recall that a subset of Rn is said to be countably Hk-rectifiable if it is the union
of an Hk-negligible set and a countable family of Lipschitz images of bounded subsets of Rk. For example,
any countable union of k-dimensional submanifolds (of class C1) of Rn is Hk-measurable and countably
Hk-rectifiable, as well as any countable union of images of C∞ functions (defined on C∞ manifolds with a
countable base) of maximum rank k, thanks to [64, Theorem 1]. We refer the reader to [29, Theorem 3.2.22]
for the definition of the approximate k-dimensional Jacobian ap JkP of a Lipschitz mapping P defined on an
Hk-measurable and countably Hk-rectifiable subset E of Rn and taking values in Rm. Notice that, if E is a
submanifold (of class C1) of Rn and P is of class C1, then apJkP (x) is simply ‖

∧k
Tx(P )‖ for every x ∈ E,

where Tx(P ) denotes the differential of f .

Proposition 10.4. Let, for j = 1, 2, Ej be an Hkj -measurable and countably Hkj -rectifiable subset of Rnj .
Assume that k2 6 k1, and let P be a locally Lipschitz mapping of E1 into E2. Take a positive function
f ∈ L1

loc(Hk1) which vanishes one the complement of E1, and assume that f(x) apJk2P (x) 6= 0 for Hk1-
almost every x ∈ E1, and that P is (f · Hk1)-proper.14

Then, the following hold:

1. the mapping

g : Rn2 3 y 7→
∫
P−1(y)

f

ap Jk2P
dHk1−k2

is well-defined Hk2-almost everywhere and measurable; in addition,

P∗(f · Hk1) = g · Hk2 ;

2. the measure

βy :=
1

g(y)

f

ap Jk2P
χP−1(y) · Hk1−k2

is well-defined and Radon for P∗(f · Hk1)-almost every y ∈ Rn2 ; in addition, (βy) is a disintegration of
f · Hk1 relative to P ;

3. βy is equivalent to χP−1(y) · Hk1−k2 for P∗(f · Hk1)-almost every y ∈ E2.

10.2 Schwartz Functions

In this subsection we shall extend some results on composite differentiable functions by E. Bierstone, P.
Milman and G. W. Schwarz to the case of Schwartz functions by means of techniques developed by F.
Astengo, B. Di Blasio and F. Ricci.

We shall take advantage of the remarkable works of E. Bierstone, P. Milman and G. W. Schwarz about
the composition of smooth functions on analytic manifolds. Recall that, if M is a (real, finite-dimensional)
analytic manifold, then a subset A of M is called analytic if every x ∈ M has a neighbourhood U such that
U ∩ A is the zero locus of a (real) analytic function on U . The set A is semianalytic if every x ∈ M has
a neighbourhood U such that U ∩ A belongs to the algebra of subsets of U generated by the sets of the
form f−1(]0,∞[), where f is a (real) analytic function on U . The set A is subanalytic if every x ∈ M has

14Thus, both f · Hk1 and P∗(f · Hk1 ) are Radon measures.
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a neighbourhood U such that U ∩ A = pr1(B) for some analytic manifold N and some relatively compact
semianalytic subset B of M×N . The set A is Nash subanalytic of pure dimension k if it is closed, subanalytic,
and, for every x ∈ A, dimx Y = dimZx = k, where Zx denotes the smallest germ of an analytic set at x
containing the germ of A at x (cf. [11, 1.5]). A closed subanalytic set is Nash subanalytic if it is the locally
finite union of Nash subanalytic sets of pure dimension. We refer the reader to [9, 10, 11] for an account of
the main properties of semianalytic and (Nash) subanalytic sets. As a matter of fact, in the applications we
shall only need to know that any closed convex subanalytic set is automatically Nash subanalytic, since it is
contained in an affine space of the same dimension, and that closed semianalytic sets are Nash subanalytic
(cf. [9, Proposition 2.3]).

Our starting point is the following result (cf. [9, Theorem 0.2] and [11, Theorem 0.2.1]). If C is a closed
subset of Rn, then we denote by E(C) is the quotient of E(Rn) by the space of functions of class C∞ which
vanish on C.

Theorem 10.5. Let C be a closed subanalytic subset of Rn and let P : Rn → Rm be an analytic mapping.
Assume that P is proper on C and that P (C) is Nash subanalytic. Then, the canonical mapping

Φ: E(Rm) 3 ϕ 7→ ϕ ◦ P ∈ E(C)

has a closed range, and admits a continuous linear section defined on Φ(E(Rn)).
In addition, ψ ∈ E(C) belongs to the image of Φ if and only if for every y ∈ P (C) there is ϕy ∈ E(Rm)

such that, for every x ∈ C such that P (x) = y, the Taylor series of ϕy ◦ P and ψ at x differ by the Taylor
series of a function of class C∞ which vanishes on C.

In order to simplify the notation, we shall simply say that ψ is a formal composite of P if the second
condition of the statement holds.

We shall now describe how Theorem 10.5 can be extended to the case of Schwartz functions. The strategy
developed in [5] is the following: first, decompose dyadically a given Schwartz function in a sum of dilates of
a family of test functions with a suitable decay; then, apply the section given by Theorem 10.5, truncate the
resulting functions (so that they are still test functions), and finally sum their dilates. In order to do that,
however, we need homogeneity.

Theorem 10.6. Let P : Rn → Rm be a polynomial mapping, and assume that Rn and Rm are endowed with
dilations such that P (r · x) = r · P (x) for every r > 0 and for every x ∈ Rn. Let C be a dilation-invariant
subanalytic closed subset of Rn, and assume that P is proper on C and that P (C) is Nash subanalytic. Then,
the canonical mapping

Φ: S(Rm) 3 ϕ 7→ ϕ ◦ P ∈ S(C)

has a closed range and admits a continuous linear section defined on Φ(S(Rm)). In addition, ψ ∈ S(C)
belongs to the image of Φ if and only if it is a formal composite of P .

As a matter of fact, in our applications C is (a subset of) σ(LA). Then, Theorem 10.6 gives suffi-
cient conditions in order that some f ∈ SP (LA)(G) which also belongs to KLA(S(σ(LA))) should belong to
KP (LA)(S(σ(P (LA)))) (cf. Section 5).

Notice, however, that sometimes it is convenient to take C so as to be a subset of σ(LA) such that
P (C) = σ(P (LA)), since σ(LA) need not be subanalytic.

Proof. For the first assertion, simply argue as in the proof of [5, Theorem 6.1] replacing the linear section
provided by Schwarz and Mather with that of Theorem 10.5.

As for the second part of the statement, notice first that it follows easily from Theorem 10.5 when ψ is
compactly supported; since the image of Φ is closed, it follows by approximation in the general case.

In the following result, we give a simple but very useful application of Theorem 10.6.

Corollary 10.7. Let V and W be two finite-dimensional vector spaces, C a subanalytic closed convex cone
in V , and L a linear mapping of V into W which is proper on C. Take m1 ∈ S(V ), and assume that there
is m2 : W → C such that m1 = m2 ◦ L on C. Then, there is m3 ∈ S(W ) such that m1 = m3 ◦ L on C.

Proof. Observe first that we may assume that C has non-empty interior and vertex 0. In addition, observe
that L(C) is subanalytic (cf. [10, Theorem 0.1 and Proposition 3.13]), hence Nash subanalytic. Now, fix
x ∈ C. Since the interior of C is not empty, it is clear that C is a total subset of V , so that we may find a
free family (vj)j∈J in C which generates an algebraic complement V ′ of kerL in V . In addition, since either
x = 0 or x 6∈ kerL, we may assume that x ∈ V ′. Let L′ : W → V be a linear mapping such that L′ ◦ L is the
identity on V ′ and such that L ◦ L′ is the identity on L(V ).
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Define m′ := m1 ◦ L′, so that m′ ∈ E(W ). Next, define C ′ := V ′ ∩ C, so that C ′ is a closed convex cone
with non-empty interior in V ′, since it contains the non-empty open set

∑
j∈J R

∗
+vj . Take z ∈ C ′ and any

y ∈ C ∩ (x+ kerL). Then, x+ z = (L′ ◦ L)(x+ z) = (L′ ◦ L)(y + z), so that m1 = m′ ◦ L on y + C ′. Since
m1 is constant on the intersections of C with the translates of kerL, the same holds on C ∩ (y+C ′ + kerL).
Now, denote by C ′◦ the interior of C ′ in V ′. Then, y+C ′◦+ kerL is an open convex set and y is adherent to
C ∩ (y + C ′◦ + kerL), which has non-empty interior since it is not empty and C is the closure of its interior
(cf. [16, Corollary 1 to Proposition 16 of Chapter II, § 2, No. 6]). Hence, the Taylor polynomials of every
fixed order of m1 and m′ ◦L about y coincide on C ∩ (y+C ′◦+ kerL), hence on V . Since this holds for every
y ∈ C ∩ [x+ kerL], Theorem 10.6 implies that there is m3 ∈ S(W ) such that m1 = m3 ◦ L on C.
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