The Automated Functional Prediction (AFP) of proteins became a challenging problem in bioinformatics and biomedicine aiming at handling and interpreting the extremely large-sized proteomes of several eukaryotic organisms. A central issue in AFP is the absence in public repositories for protein functions, e.g. the Gene Ontology (GO), of well defined sets of negative examples to learn accurate classifiers for AFP. In this paper we investigate the Query by Committee paradigm of active learning to select the negatives most informative for the classifier and the protein function to be inferred. We validated our approach in predicting the Gene Ontology function for the S.cerevisiae proteins.

Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions / M. Frasca, M. Sepehri, A. Petrini, G. Grossi, G. Valentini (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Computational Intelligence Methods for Bioinformatics and Biostatistics / [a cura di] M. Raposo, P. Ribeiro, S. Sério, A. Staiano, A. Ciaramella. - [s.l] : Springer, 2020. - ISBN 9783030345846. - pp. 80-87 (( Intervento presentato al 15. convegno International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics tenutosi a Caparica nel 2018 [10.1007/978-3-030-34585-3_7].

Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions

M. Frasca
Primo
;
M. Sepehri
Secondo
;
A. Petrini;G. Grossi
Penultimo
;
G. Valentini
Ultimo
2020

Abstract

The Automated Functional Prediction (AFP) of proteins became a challenging problem in bioinformatics and biomedicine aiming at handling and interpreting the extremely large-sized proteomes of several eukaryotic organisms. A central issue in AFP is the absence in public repositories for protein functions, e.g. the Gene Ontology (GO), of well defined sets of negative examples to learn accurate classifiers for AFP. In this paper we investigate the Query by Committee paradigm of active learning to select the negatives most informative for the classifier and the protein function to be inferred. We validated our approach in predicting the Gene Ontology function for the S.cerevisiae proteins.
Query by committee; active learning; protein function prediction
Settore INF/01 - Informatica
2020
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
extension_cibb18.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 452.86 kB
Formato Adobe PDF
452.86 kB Adobe PDF Visualizza/Apri
Frasca2020_Chapter_Committee-BasedActiveLearningT.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 763.27 kB
Formato Adobe PDF
763.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/713058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact