The Automated Functional Prediction (AFP) of proteins became a challenging problem in bioinformatics and biomedicine aiming at handling and interpreting the extremely large-sized proteomes of several eukaryotic organisms. A central issue in AFP is the absence in public repositories for protein functions, e.g. the Gene Ontology (GO), of well defined sets of negative examples to learn accurate classifiers for AFP. In this paper we investigate the Query by Committee paradigm of active learning to select the negatives most informative for the classifier and the protein function to be inferred. We validated our approach in predicting the Gene Ontology function for the S.cerevisiae proteins.
Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions / M. Frasca, M. Sepehri, A. Petrini, G. Grossi, G. Valentini (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Computational Intelligence Methods for Bioinformatics and Biostatistics / [a cura di] M. Raposo, P. Ribeiro, S. Sério, A. Staiano, A. Ciaramella. - [s.l] : Springer, 2020. - ISBN 9783030345846. - pp. 80-87 (( Intervento presentato al 15. convegno International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics tenutosi a Caparica nel 2018 [10.1007/978-3-030-34585-3_7].
Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions
M. Frasca
Primo
;M. SepehriSecondo
;A. Petrini;G. GrossiPenultimo
;G. ValentiniUltimo
2020
Abstract
The Automated Functional Prediction (AFP) of proteins became a challenging problem in bioinformatics and biomedicine aiming at handling and interpreting the extremely large-sized proteomes of several eukaryotic organisms. A central issue in AFP is the absence in public repositories for protein functions, e.g. the Gene Ontology (GO), of well defined sets of negative examples to learn accurate classifiers for AFP. In this paper we investigate the Query by Committee paradigm of active learning to select the negatives most informative for the classifier and the protein function to be inferred. We validated our approach in predicting the Gene Ontology function for the S.cerevisiae proteins.File | Dimensione | Formato | |
---|---|---|---|
extension_cibb18.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
452.86 kB
Formato
Adobe PDF
|
452.86 kB | Adobe PDF | Visualizza/Apri |
Frasca2020_Chapter_Committee-BasedActiveLearningT.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
763.27 kB
Formato
Adobe PDF
|
763.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.