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Abstract. The Automated Functional Prediction (AFP) of proteins be-
came a challenging problem in bioinformatics and biomedicine aiming at
handling and interpreting the extremely large-sized proteomes of several
eukaryotic organisms. A central issue in AFP is the absence in public
repositories for protein functions, e.g. the Gene Ontology (GO), of well
defined sets of negative examples to learn accurate classifiers for AFP.
In this paper we investigate the Query by Committee paradigm of active
learning to select the negatives most informative for the classifier and the
protein function to be inferred. We validated our approach in predicting
the Gene Ontology function for the S.cerevisiae proteins.

Keywords: Query by Committee, active learning, protein function pre-
diction.

1 Scientific Background

The Automated Function Prediction (AFP) of proteins involves sophisticated
computational techniques to accurately predict the annotations of proteins and
proteomes. AFP is characterized by several issues, including the selection of neg-
ative examples to train high quality predictors. The Gene Ontology (GO) [1],
the reference repository of protein functions, usually stores positive associations
(also referred to as annotations) between GO terms and proteins, whereas unan-
notated proteins are rarely marked as negative for a given term — a protein not
currently annotated with a GO term, might be a positive example which has
not been detected yet due to insufficient studies. Surprisingly, a few works in-
vestigated this problem, mainly leveraging the GO structure (a directed acyclic
graph) to choose negative examples. Since in the GO the true path rule (TPR)
holds, which transfers annotations for a node to all its ancestors, initial ap-
proaches considered as negative examples for a term all proteins directly an-
notated (i.e., before applying the TPR) in neither descendant nor ancestral
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terms [2]. Indeed, proteins annotated with descendants belong also to the current
term (descendants specialize the node concept), and annotations (direct) with
ancestors might be transferred to some descendants in light of future studies.
Under the assumption that proteins are rarely annotated with more than one
child of the same node, proteins annotated with sibling terms (i.e. terms sharing
at least one parent) have also been adopted as negative examples [3]. More re-
cent works selected negatives based on the empirical conditional probability of
annotating a protein with the GO function of interest given all the annotations
that protein had with all the other functions [4], or just with the most specific
ones [5], in all three branches. Lastly, in [6,7] authors assessed the relevance
of several protein features, extracted from protein networks, in detecting false
negatives using a GO temporal holdout setting, thus providing insights about
how to effectively select negative proteins.

We present here a preliminary work which addresses the negative selection
problem by leveraging Query by Committee (QBC) active learning (AL) [9]
to appropriately select the negative proteins. Unlike usual approaches to ac-
tive learning, which typically aim to obtain the true labels of some selected data
points, our approach undertakes the selection of negative examples (whose labels
are obviously known). The rationale behind this approach is that the capability
of active learning to focus on the most informative examples can be leveraged
to filter out from the training set unhelpful non-positive proteins — or even
harmful. Pool-based QBC considers most informative the examples from a pool
of unlabeled examples on which the committee members (classifiers) most dis-
agree. Hence, in our setting QBC is used to select as negative examples a subset
of proteins from the pool represented by non-positive proteins. We experimen-
tally validated our approach using two well-known classifiers to predict, in a
genome-wide fashion, the GO functions of S. cerevisiae (yeast) proteins.

2 Preliminaries and notations

Vectors and matrices are denoted using standard, lower bold and upper bold sym-
bols as « and X . Protein pairwise similarities are represented by an undirected
weighted graph G(V, W), where V' = {1,...,n} is the set of nodes/proteins and
W is the n X n matrix of intra-protein functional similarity: W;; € [0,1] is the
similarity between proteins 4,5 € V, with W;; = 0 when ¢ and j are not con-
nected. Given a protein function, the labels are described by the binary vector
vy = (y1,Y2,-.-,Yn), where y; = 1 if protein 7 is annotated with that function
(positive instance), —1 otherwise. Here the GO terms are adopted as protein
functions. Let Vi := {i € V|y; = 1} and V_ := {i € V]y; = —1} be the subsets
of positive and non positive proteins, respectively. A relevant issue in AFP is
the labeling imbalance: most GO functions posses a highly unbalanced labeling,
that is % < 1. Furthermore, the labeling is known only for a subset S C V'
of proteins, where it is unknown for its complement set U := V \ S. We conse-
quently denote by Sy := SNV, and S_ := SN V_ the known sets of positive
and non positive proteins for a given GO term, respectively.
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The Automated protein Function Prediction (AFP) problem consists in in-
ferring the labeling for proteins U using the known labels and the connection
matrix W.

The complexity of AFP is increased by the fact that the GO rarely stores neg-
ative annotations between proteins and functions, and only positive annotations
are usually available. Thus, non positive proteins (proteins in S_) typically do
not correspond to megative annotations, and some of them might be redundant
for the current task. Moreover, some non positive proteins might become positive
in future, in case further studies would annotate them. This makes central the
need to select informative negatives among non positive proteins to be used as
negative examples during the learning of automated models for solving AFP —
indirectly, it would also cope with the label imbalance, since the disproportion
between positives and negatives would be reduced.

2.1 Instance representation.

Following [10], the input proteins are represented through a two-dimensional
feature vector, obtained by operating a projection of nodes S onto the space
R?2, so that the node i € S is associated with the point @; = (z1;7:2), where
Til = ZjeS+ W;j; and x;0 = Zjes, W;;. This embedding casts into the position
of point «; the imbalance in the neighborhood of protein ¢ in the graph, and
sensibly reduces the input space dimension, thus speeding up the computation.
Moreover, recent studies have confirmed that this two features are informative
for inferring GO functions [6, 7]. The obtained training set is L = {(x;, y;)|i € S}.

2.2 Data

We retrieved the yeast protein network from the STRING database, version
10.5 [11], which merges several sources of information about proteins, including
experimental data, such as GRID, HPRD, IntAct, and curated data, like Bio-
carta and KEGG. The matrix W of Section 2 is obtained from the STRING
connections W after the normalization W = D~ Y/2W D~ 1/2 , which preserves
the connection symmetry. D is the diagonal matrix with non-null elements
dii =3 ; Wij. As suggested by STRING curators, we set the threshold for con-
nection weights to 700. The final network contains 6391 proteins. Annotations
for the three GO branches, namely Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC), have been downloaded from the UniProt
GOA, release 69 (9 May 2017), by retaining solely experimentally validated an-
notations. To discard too generic terms and having a minimum of information
to learn, we chose functions with 10-100 annotations, obtaining 162, 227 and
660 terms for CC, MF, and BP branches, respectively.

3 Algorithm

We propose a novel approach to address the negative selection in AFP, which
leverages a variant of Query by Committee active learning to appropriately select
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the most informative negative examples. In particular, our technique focuses on
the selection of most informative negatives for the specific classification model,
rather than selecting those negative examples “most informative” in general. We
empirically validated our proposal on two well-known supervised classifiers.

3.1 QBC active learning for negative selection

Let 0 < B < |S_| be the cardinality of a subset of negative examples S_ C S_,
which has to be selected in order to maximize the performance of a classifier
trained using the examples S; U S_. B is also referred to as budget of the
negative selection algorithm.

This problem is tackled through a pool-based QBC-AL algorithm, which
typically examines a pool of unlabeled examples and selects only those that are
most informative according to the committee models (classifiers in our setting),
and asks for their labels. This avoids to save annotation cost by discarding
redundant labeling examples that contribute little new information [9]. Common
approaches for pool-based QBC is to ask the label of those points on which
committee members most disagree [12].

We adopt a variant of active learning, since we want the QBC algorithm to
select instances whose label is known already (equal to —1). Nevertheless, we
may exploit AL to pick out the “most informative” negative points for training
our model. Our QBC-AL algorithm is defined as follows.

QBC-AL procedure (template).

1. A seed training set I(0) = S, U S_(0) is selected, where S_(0) C S_ is
randomly drawn and balanced (i.e., |S_(0)| = [S4|).! Due to the rarity of
positives, I(0) contains all available positives.

2. At iteration ¢ > 1, learn m committee models fj : I(t — 1) — {-1,1},
ke{1,2,...,m}.

3. Build I(¢) by adding to I(t — 1) the s instances in S_\ I(¢ — 1) with highest
degree of disagreement among the committee members.

4. Update the committee classifiers using I(t).

5. Iterate steps 2—4 until time ¢, with |I(¢)| = |S4| + B (budget is exhausted).

The rationale is that examples on which the classifiers most disagree have a
higher ‘utility’ for the committee. Further, it is beneficial in QBC ensuring
diversity among committee classifiers [13]: a common approach is to use bag-
ging for learning the m committee classifiers [14], in which m random subsets
I, Is,..., I, of I(t) are randomly drawn, and the member f; is trained using
the set Ij. In our setting each I; contains all available positives and a randomly
drawn subset of non positive examples in ().

The Vote Entropy has been employed as measure of disagreement, a nat-
ural measure for quantifying the uniformity of classes assigned to an exam-
ple by the different committee members [12]. Given an instance x € R, its

1 A balanced seed training set counterbalances the predominance of —1 labels, and
experimentally performed best
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Vote Entropy disagreement is V(x) = —v, logr, — (1 — v;)log(l — v,), where
Vp = w, and I is the indicator function. Thus v, is the proportion
of members that predicted x as positive. Accordingly, the closer v, to 0.5, the
higher the Vote Entropy disagreement.

We validated the QBC-AL algorithm to select negatives in AFP by adopting
two popular feature-based models at Step 2 of the procedure, which are briefly
described below.

Support Vector Machines. Given a training set L = {(x;,1;)} € R?x {—1,1}, the
Support Vector Machine (SVM) [15,16] learns the hyperplane @ € R? unique
solution of the following optimization problem:

|L|
1 2
st . 1
wme}gc2||w||,c+ C g e;(w) (1)

where e;(w) = 1 — l;{w, ¢ (@), if [;{w, dxc(x;)) < 1 (margin constraint viola-
tion), 0 otherwise, and K is a kernel implementing the inner product K(x, z) =
(¢ (x), dic(2)) of two vectors =, z € R? according to a feature map ¢ : R —
Hy. Hi is suitable high dimensional space. The margin of an instance x; is
}Zlfz‘l o;l;K ()|, where aj > 0 are the Lagrange multipliers (see for in-
stance [16]).

Two popular choices of K are adopted in this work, namely the linear kernel

_ 2
Ki(x,z) = 27z, and the Gaussian kernel Ka(zx, z) = exp(f%)
Decision Trees. Let X7, ..., X, be ¢ predictor variables (discrete or continuous),

L ={(x;,l;)} € R?x {—1,1} be a set of labeled observations on a class variable
Y (binary in our case) that takes values —1, 1. Briefly, the decision tree (DT)
algorithm [17] learns a model T : R? — {—1,1} for predicting the values of ¥’
from observations x; by simply partitioning the space R? into 2 disjoint sets A_,
Ay, such that the predicted value of Y is —1 if T'(x;) € A_, 1 if T'(x;) € A4

Classification tree methods grows from an initial (root) node by recursively
partitioning the data set one predictor variable at a time. Each node is assigned
a label (=1 or 1), and accordingly it is associated with a classification error
(based on labels [;), used to measure the node impurity. At each step, the node
to be split is determined by exhaustively searching the split, e.g. X; > ¢, over
all nodes and predictors X; which minimizes the total impurity of its two child
nodes. Then, during the inference process, an instance x; at the split node moves
to one of the two children according to the value of its j-th component x;; —in
our example, if x;; <t move to left child, else move to right child). The process
iterates till a stopping criterion is met (e.g. maximum depth reached). To predict
an instance z, the algorithm follows the path from the root to a leaf node, and
classify z with the label of that leaf node. As impurity measure a common choice
is the Gini index [18], which has been adopted also in this work.
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Fig. 1. F values averaged across CC terms for (a) DT and (b) linear SVM algorithms.
B is the negative budget, s is the active learning parameter, m the number of committee
members.

4 Results

We name SVM QBC (resp. DT QBC) the method using SVMs (resp. DTs) both
at step 2 of the QBC-AL procedure and as final model over the set I(¢). Firstly,
to evaluate the usefulness of QBC, we implemented an active learning negative
selection using only one member (baseline AL, m = 1), where the most informa-
tive instances are those with smaller margin for SVMs, and those belonging to
the leaves with higher impurity for DTs. Generalization capabilities have been
evaluated using a 3-fold cross validation (CV) procedure, and measured in terms
of F; measure (F in short), which is a measure suitable for unbalanced labelings.
The model parameters, C' for linear SVM, C and o for Gaussian SVM, and the
tree maximum depth for DT, have been learned through inner 3-fold CV.

We first investigated the impact of parameters s and B on the model perfor-
mance, by tuning them on the CC GO terms. Furthermore, the variant of AL,
named One shot, has been implemented, in which all the negatives (B — |S(0)|)
are selected at the first iteration of step 3 of the QBC-AL procedure. There is
at least one QBC configuration which outperforms the baseline AL in all the
settings, and the improvements are remarkable when using SVM (see Fig. 1).
Interestingly, with just 200 negatives, SVM QBC already achieves its top perfor-
mance, and adding further examples (B = 300 or B = 400) does not significantly
helps. A similar behaviour is shown also for DT QBC. The one shot approach
seems penalizing more DT-based methods, whereas SVM even in this setting
achieves competitive performance with regard to other choices of s. In particu-
lar, in this setting, increasing the number of committee members does not help,
differently from other choices of s, where in most cases setting m = 4,5 (i.e. the
highest number of members tested) corresponds to the best results. This is to
some extent expected, since the one shot strategy involves the committee just
once, thus reducing the relevance of QBC.
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Fig. 2. F values averaged across (a) MF and (b) BP terms. White boxes correspond to
SVM methods, gray boxes to DT methods. SVM-1 and SVM-r denotes respectively the
SVM using linear and Gaussian kernels. Red horizontal segments correspond to mean
values.

To assess the effectiveness in AFP for models using QBC, we also tested the
vanilla SVM and DT, learned on all available training data (no negative selection
applied), and the SVM and DT where the B negative examples are uniformly ex-
tracted (named SVM RNEG and DT RNEG). We set s = 100, B = 400 for DT,
and s = 200, B = 300 for SVMs, and m = 5, as consequence of the results ob-
tained in the first experiment (see Fig. 1). QBC negative selection always allows
to outperform both the vanilla variant and the variant using random negative
selection on MF anc BP classes (see Fig. 2). CC results, not reported, shown an
analogous trend. Random negative selection performs better than vanilla meth-
ods, confirming the need of negative selection in this context. Noticeable is the
case of SVM-1, which is the worst method in the vanilla fashion, but with QBC
is the top performing method. The improvements of QBC over RNEG negative
selection are always statistically significant according to the Wilcoxon signed
rank test (p-value < 0.05) [19].

Finally, to analyze to overall performance of our strategy, we compared the
top performing algorithm (SVM-I-QBC, m = 5, s = 200, B = 300) with the
state-of-the-art networks-based methods for AFP, including also well-known
general-purpose methods, namely the Random Walk (RW) [20] and the La-
bel Propagation (LP) [21] algorithms. The top-performing methods proposed
specifically for AFP considered here are the followings: the guilt-by-association
(GBA) method [22], classifying nodes according to their neighboring functions;
the Cost-Sensitive Neural Network (COSNet) [10,23], designed for classifying
with unbalanced data, and competitive on the MOUSEFUNC benchmark [24];
the Multi-Source k-Nearest Neighbors (MS-KkNN) [25], among the top-ranked
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Table 1. Averaged AUPR values.

RW GBA LP MS-kNN  RANKS COSNet SVM-1-QBC

BP 0.244 0.145 0.224 0.116 0.271 0.241 0.327
MF  0.199 0.125 0.201 0.090 0.236 0.214 0.293
CC 0.367 0.207 0.308 0.218 0.398 0.361 0.427

methods in the recent CAFA2 international challenge for AFP [26]; the RAnking
of Nodes with Kernelized Score Functions (RANKS) [27], proposed as effective
ranking algorithm for AFP. Free parameters, when present, have been learned
through inner 3-fold CV. Since the above-mentioned methods do not provide
binary predictions, but just a node ranking, in order to have a fair comparison
we adopted as performance measure the Area Under the Precision-Recall curve
(AUPR), as recently done in the CAFA2 challenge. For our methodology we
naturally obtained a node ranking by considering as final prediction the margin
of instances in the final model. As we can see from Table 1, our method achieves
the top average results in all the GO branches, and the results are statistically
significant (p — value < 0.05).

5 Conclusion

Preliminary results have shown that Query by Committee active learning might
be employed as effective tool to address the negative selection problem in AFP.
Despite the promising results, further studies must be carried out to investigate
the impact that several features of the method have on the classification abili-
ties, like the adoption of different measures of committee disagreement among
the numerous measures proposed in the literature, and of different stopping cri-
terion than fixing a budget of negatives, along with experimentations on other
organisms/datasets.

Acknowledgments

This work was supported by the grant title Machine learning algorithms to han-
dle label imbalance in biomedical taxonomies, code PSR2017_DIP_010_MFRAS,
Universita degli Studi di Milano.

References

1. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nature genetics 25(1) (May 2000) 25-29

2. Eisner, R., Poulin, B., Szafron, D., Lu, P.: Improving protein prediction using the
hierarchical structure of the Gene Oontology. In: IEEE Symposium on Computa-
tional Intelligence in Bioinformatics and Computational Biology. (2005)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Title Suppressed Due to Excessive Length 9

Mostafavi, S., Morris, Q.: Using the gene ontology hierarchy when predicting gene
function. In: Proceedings of the Twenty-Fifth Annual Conference on Uncertainty
in Artificial Intelligence (UAI-09), Corvallis, Oregon, AUAI Press (2009) 419-427
Youngs, N., Penfold-Brown, D., Bonneau, R., Shasha, D.: Negative example selec-
tion for protein function prediction: The NoGO database. PLOS Computational
Biology 10(6) (06 2014) 1-12

Youngs, N., Penfold-Brown, D., Drew, K., Shasha, D.,; Bonneau, R.: Parametric
bayesian priors and better choice of negative examples improve protein function
prediction. Bioinformatics 29(9) (2013) 1190-1198

Frasca, M., Lipreri, F., Malchiodi, D.: Analysis of informative features for nega-
tive selection in protein function prediction. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 10209 (2017) 267-276

Boldi, P., Frasca, M., Malchiodi, D.: Evaluating the impact of topological protein
features on the negative examples selection. BMC Bioinformatics 19(14) (Nov
2018) 417

Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query
by committee algorithm. Machine Learning 28(2) (Aug 1997) 133-168

Bertoni, A., Frasca, M., Valentini, G.: COSNet: a cost sensitive neural network
for semi-supervised learning in graphs. In: ECML PKDD 2011. Volume 6911 of
Lecture Notes on Artificial Intelligence., Springer (2011) 219-234 do0i:10.1007/978-
3-642-23780-5_24.

Szklarczyk, D., et al.: String v10: proteinprotein interaction networks, integrated
over the tree of life. Nucleic Acids Research 43(D1) (2015) D447-D452

Dagan, 1., Engelson, S.P.: Committee-based sampling for training probabilistic
classifiers. In: In Proceedings of the T'welfth International Conference on Machine
Learning, Morgan Kaufmann (1995) 150-157

Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Proceedings
of the Twenty-first International Conference on Machine Learning. ICML ’04, New
York, NY, USA, ACM (2004) 74—

Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging.
In: Proceedings of the Fifteenth International Conference on Machine Learning.
ICML ’98, San Francisco, CA, USA (1998) 1-9

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines:
And Other Kernel-based Learning Methods. Cambridge University Press, New
York, NY, USA (2000)

Breiman, L., Friedman, G., Olshen, R., Stone, C.: Classification And Regression
Trees. Wadsworth, Belmont, CA (1984)

Gini, C.: Variabilita e Mutuabilita. Contributo allo Studio delle Distribuzioni e
delle Relazioni Statistiche, C. Cuppini, Bologna (1912)

Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1 (1945)
80-83

Lovasz, L.: Random walks on graphs: A survey. In Miklés, D., Sés, V.T., Szényi, T.,
eds.: Combinatorics, Paul Erdés is Eighty. Volume 2. Janos Bolyai Mathematical
Society, Budapest (1996) 353-398

Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proceedings of the Twentieth International
Conference on International Conference on Machine Learning. ICML’03, AAAI
Press (2003) 912-919



10

21.

22.

23.

24.

25.

26.

Authors Suppressed Due to Excessive Length

Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in
yeast. Nature biotechnology 18(12) (December 2000) 1257-1261

Frasca, M., Pavesi, G.: A neural network based algorithm for gene ex-
pression prediction from chromatin structure. In: IJCNN, IEEE (2013) 1-8
doi:10.1109/IJCNN.2013.6706954.

Frasca, M., Bertoni, A., Valentini, G.: UNIPred: Unbalance-aware Network Inte-
gration and Prediction of Protein Functions. Journal of Computational Biology
22(12) (2015) 1057-1074

Lan, L., Djuric, N., Guo, Y., S., V.. MS-kNN: protein function prediction by
integrating multiple data sources. BMC Bioinformatics 14(Suppl 3:S8) (2013)
S3-S8

Jiang, Y., Oron, T.R., et al.: An expanded evaluation of protein function prediction
methods shows an improvement in accuracy. Genome Biology 17(1) (2016) 184
Re, M., Mesiti, M., Valentini, G.: A Fast Ranking Algorithm for Predicting Gene
Functions in Biomolecular Networks. IEEE ACM Transactions on Computational
Biology and Bioinformatics 9(6) (2012) 1812-1818



