Background Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying the AMR in aquatic ecosystems. Results The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (> 95%) were detected for tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (< 10%). No AMR to cefquinome was found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed. Conclusions Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as potential source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health.

Motile aeromonads from farmed and wild freshwater fish in northern Italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016 / L. Borella, C. Salogni, N. Vitale, F. Scali, V.M. Moretti, P. Pasquali, G.L. Alborali. - In: ACTA VETERINARIA SCANDINAVICA. - ISSN 1751-0147. - 62:2(2020 Jan 23), pp. 1-8.

Motile aeromonads from farmed and wild freshwater fish in northern Italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016

V.M. Moretti
;
2020

Abstract

Background Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying the AMR in aquatic ecosystems. Results The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (> 95%) were detected for tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (< 10%). No AMR to cefquinome was found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed. Conclusions Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as potential source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health.
Aquatic zoonosis; Critically important antimicrobials; Freshwater fish; Motile aeromonads; Multidrug resistance
Settore AGR/19 - Zootecnica Speciale
23-gen-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Borella et al 2020.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 889.16 kB
Formato Adobe PDF
889.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/708402
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact