We address the discontinuities of the quantum Fisher information (QFI) that may arise when the parameter of interest takes values that change the rank of the quantum statistical model. We revisit the classical and the quantum Cramér-Rao theorems, show that they do not hold in these limiting cases, and discuss how this impacts on the relationship between the QFI and the Bures metric. In order to illustrate the metrological implications of our findings, we present two paradigmatic examples, where we discuss in detail the role of the discontinuities. We show that the usual equivalence between the variance of the maximum likelihood estimator and the inverse of the QFI breaks down.

On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank / L. Seveso, F. Albarelli, M.G. Genoni, M.G.A. Paris. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:2(2020 Jan 17), pp. 02LT01.1-02LT01.13. [10.1088/1751-8121/ab599b]

On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank

L. Seveso;F. Albarelli;M.G. Genoni;M.G.A. Paris
2020

Abstract

We address the discontinuities of the quantum Fisher information (QFI) that may arise when the parameter of interest takes values that change the rank of the quantum statistical model. We revisit the classical and the quantum Cramér-Rao theorems, show that they do not hold in these limiting cases, and discuss how this impacts on the relationship between the QFI and the Bures metric. In order to illustrate the metrological implications of our findings, we present two paradigmatic examples, where we discuss in detail the role of the discontinuities. We show that the usual equivalence between the variance of the maximum likelihood estimator and the inverse of the QFI breaks down.
Settore FIS/03 - Fisica della Materia
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
17-gen-2020
19-dic-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Seveso_2020_J._Phys._A__Math._Theor._53_02LT01.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1906.06185v2.pdf

accesso aperto

Descrizione: arXiv, last revised version
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 537.79 kB
Formato Adobe PDF
537.79 kB Adobe PDF Visualizza/Apri
1906.06185v1.pdf

accesso aperto

Descrizione: arXiv, submitted version
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 493.35 kB
Formato Adobe PDF
493.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/705742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact