We address the discontinuities of the quantum Fisher information (QFI) that may arise when the parameter of interest takes values that change the rank of the quantum statistical model. We revisit the classical and the quantum Cramér-Rao theorems, show that they do not hold in these limiting cases, and discuss how this impacts on the relationship between the QFI and the Bures metric. In order to illustrate the metrological implications of our findings, we present two paradigmatic examples, where we discuss in detail the role of the discontinuities. We show that the usual equivalence between the variance of the maximum likelihood estimator and the inverse of the QFI breaks down.
On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank / L. Seveso, F. Albarelli, M.G. Genoni, M.G.A. Paris. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 53:2(2020 Jan 17), pp. 02LT01.1-02LT01.13. [10.1088/1751-8121/ab599b]
On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank
L. Seveso;F. Albarelli;M.G. Genoni;M.G.A. Paris
2020
Abstract
We address the discontinuities of the quantum Fisher information (QFI) that may arise when the parameter of interest takes values that change the rank of the quantum statistical model. We revisit the classical and the quantum Cramér-Rao theorems, show that they do not hold in these limiting cases, and discuss how this impacts on the relationship between the QFI and the Bures metric. In order to illustrate the metrological implications of our findings, we present two paradigmatic examples, where we discuss in detail the role of the discontinuities. We show that the usual equivalence between the variance of the maximum likelihood estimator and the inverse of the QFI breaks down.File | Dimensione | Formato | |
---|---|---|---|
Seveso_2020_J._Phys._A__Math._Theor._53_02LT01.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1906.06185v2.pdf
accesso aperto
Descrizione: arXiv, last revised version
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
537.79 kB
Formato
Adobe PDF
|
537.79 kB | Adobe PDF | Visualizza/Apri |
1906.06185v1.pdf
accesso aperto
Descrizione: arXiv, submitted version
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
493.35 kB
Formato
Adobe PDF
|
493.35 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.