
On the discontinuity of the quantum Fisher
information for quantum statistical models with
parameter dependent rank

Luigi Seveso

Quantum Technology Lab, Dipartimento di Fisica “Aldo Pontremoli”,
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Abstract. We address the discontinuities of the quantum Fisher information
(QFI) that may arise when the parameter of interest takes values that change the
rank of the quantum statistical model. We revisit the classical and the quantum
Cramér-Rao theorems, show that they do not hold in these limiting cases, and
discuss how this impacts on the relationship between the QFI and the Bures
metric. In order to illustrate the metrological implications of our findings, we
present two paradigmatic examples, where we discuss in detail the role of the
discontinuities. We show that the usual equivalence between the variance of the
maximum likelihood estimator and inverse QFI breaks down.
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1. Introduction

A quantum metrological protocol is a detection scheme where the inherent fragility of
quantum systems to external perturbations is exploited to enhance precision, stability
or resolution in the estimation of one or more quantities of interest. In the last two
decades, the development of advanced technologies to coherently manipulate quantum
systems, and to address them with unprecedented accuracy, made it possible to realize
several metrological schemes based on quantum systems, leading to quantum enhanced
high-precision measurements of physical parameters [1].

On the theoretical side, the main tool of quantum metrology is the so-
called quantum Cramér-Rao theorem, stating that for a regular quantum statistical
model the precision is bounded by the inverse of the quantum Fisher information
(QFI) [2, 3, 4, 5, 6, 7]. Evaluating the QFI thus provides the ultimate quantum limits
to precision, and a general benchmark to assess metrological protocols. The quantum
Cramér-Rao theorem is indeed a very powerful tool, and it has found a widespread use
in quantum metrology. At the same time, its success has lead to somehow overlooking
the mathematical details of its hypotheses, such as a possible intrinsic parameter
dependence of the measurement apparatus [8, 9] or the pathological situations that
may occur when the parameter of interest takes values that change the rank of density
matrix of the system. In such quantum statistical models, analogous to non-regular
models in classical statistics, the QFI may show discontinuities, which undermine the
validity of the Cramér Rao theorem and, in turn, its use in quantum metrology.

In this paper, we consider statistical models whose rank is a non-trivial function
of the parameter to be estimated. We address the discontinuities of classical and
quantum Fisher information and revisit both the classical and the quantum Cramér-
Rao theorems, showing that they do not hold in these limiting cases, also discussing
how this reflects on the relationship between the QFI and the Bures metric. In
order to illustrate the metrological implications of our findings, we also discuss two
paradigmatic simple examples, where the Cramér-Rao bound (CRB) may be easily
violated.

Let ρθ denote a quantum statistical model with parameter space Θ. Suppose
that θ̄ is the true value of the parameter and that, in any open neighbourhood Nθ̄ of
θ̄, there exists θ′ such that rank(ρθ′) ̸= rank(ρθ̄). The typical situation is when the
rank changes at an isolated point θ̄ of Θ, but more general situations may also be
envisioned. This apparently harmless circumstance causes new theoretical challenges
in determining the best performance of any quantum estimation strategy. Nonetheless,
it is a situation of physical interest that might naturally arise when estimating noise
parameters, e.g. in the estimation of momentum diffusion induced by collapse models
under continuous monitoring of the environment [10]. We will show that this scenario
also applies to an instance of frequency estimation with open quantum systems [11].

The consequences of allowing the rank to vary with θ can be severe, both from
a geometrical and a statistical perspective. From the geometrical point of view, it is
known that the Fisher information metric may develop discontinuities [12] and suitable
regularization techniques have been proposed for specific classes of states [13, 14]. On
the other hand, the question of how such discontinuities affect the statistical estimation
problem at hand is currently open [12]. In the following, we are going to argue that the
standard theory based on the Cramér-Rao bound breaks down at such points of the
parameter space where the rank of ρθ changes. In fact, such a failure of the standard
theory is not specific to quantum statistical models, but is actually present already at
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the classical level [15]; a generalized classical CRB for this scenario has been recently
derived [16, 17].

1.1. Classical and quantum regular models

In order to establish notation, let us briefly review the regular scenario, which is
the theoretical foundation to most applications in classical and quantum metrology.
We assume that the quantum parametrization maps φθ : θ → ρθ or the classical
one φθ : θ → pθ are sufficiently well-behaved, such that the symmetric logarithmic
derivative Lθ, implicitly defined via the relation ∂θρθ = {ρθ, Lθ}/2 or the classical
score function ℓθ = ∂θ log pθ exist and the corresponding quantum and classical Fisher
information metrics are well-defined and finite, ∀θ ∈ Θ.

Setting apart all pathological situations where these conditions do not hold,
e.g. the statistical model is non-differentiable or even discontinuous (see [18, 19]
for such a scenario in quantum estimation and [20] for classical estimation), we
further qualify a quantum statistical model as regular if it satisfies the following
conditions: 1. fixed-rank : the rank of the statistical model ρθ (i.e. the rank of
the density matrices ρθ) is independent of θ; 2. identifiable: the parametrization map
φθ : θ → ρθ is injective; 3. non-singular metric: the Fisher-Bures metric gθ, defined
by 2[1− F (ρθ, ρθ+ϵ)] = gθ ϵ

2 + O(ϵ3), where F (ρ, σ) = tr
[√√

ρσ
√
ρ
]
is the quantum

fidelity, is a well-defined positive-definite function ∀θ ∈ Θ.
Let us also give the translation of the previous definition to the classical setting.

A regular classical statistical model pθ satisfies the following conditions: 1. parameter-
independent support : the support supp(pθ) of the statistical model (i.e. the subset of
the real axis where pθ ̸= 0) is independent of θ‡; 2. identifiable: the coordinate map
φθ : θ → pθ is injective; 3. non-singular metric: the Fisher-Rao information metric
fθ, defined by 2D(pθ||pθ+ϵ) = fθ ϵ

2 + O(ϵ3), where D(p||q) =
∑

x px log px/qx is the
Kullback-Leibler divergence, is a well-defined positive-definite function ∀θ ∈ Θ.

For regular statistical models one has the following results , which provide the
standard tools of current classical and quantum metrology

Proposition 1. Given a regular classical statistical model pθ,

• For any unbiased estimator θ̂, the Cramér-Rao bound Varθ(θ̂) ≥ (M Fθ)
−1

holds,
where M is the number of repetitions and Fθ the Fisher information,

Fθ =
∑
y

[∂θpθ(y)]
2

pθ(y)
(1)

• The Cramér-Rao bound is attainable: i) for finite M , if pθ belongs to the
exponential family and θ is a natural parameter of pθ, by the unique efficient
estimator of θ ii) asymptotically, as M → ∞, e.g. by the maximum-likelihood or
Bayes estimators.

• The maximum-likelihood and Bayes estimators have the asymptotic normality

property, i.e. convergence in distribution
√
M(θ̂ − θ)

d→ N(0, 1/Fθ) as M → ∞.

In addition, we have that Fθ = fθ i.e the Fisher information equals the Fisher-Rao
metric.

‡ This is one of the conditions needed to make sure that the order of differentiation with respect to
θ and integration over the sample space can be interchanged, for more mathematical details see [21,
p. 516] and also [16] and references therein
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Proposition 2. Given a regular quantum statistical model ρθ,

• For any quantum measurement {Πx}x∈X ,
∑

x∈X Πx = I and unbiased estimator

θ̂, the quantum Cramér-Rao bound Varθ(θ̂) ≥ (M Qθ)
−1

holds, where M is the
number of repetitions, Qθ the quantum Fisher information,

Qθ = tr[ρθL
2
θ] (2)

and Lθ is the symmetric logarithmic derivative (SLD) operator, defined via the
Lyapunov equation 2∂θρθ = Lθρθ + ρθLθ.

• The quantum Cramér-Rao bound is attainable by implementing the optimal
Braunstein-Caves measurement, i.e. a projective measurement of the symmetric
logarithmic derivative Lθ, and under the conditions stated before for the resulting
classical statistical model.

In the quantum setting the optimal measurement generally depends on the
true value of the parameter θ. Nonetheless, the single-parameter quantum CRB is
attainable in the limit of many repetitions by implementing an adaptive strategy [22,
23], such as a two-stage adaptive measurement [24, 25].

By considering the spectral decomposition of the quantum statistical model
ρθ =

∑
k λk,θ|λk,θ⟩⟨λk,θ|, one obtains that the SLD operator can be written as [6]

Lθ = 2
∑

λk,θ+λl,θ>0

⟨λk,θ|∂θρθ|λl,θ⟩
λk,θ + λl,θ

|λk,θ⟩⟨λl,θ| , (3)

and consequently the QFI can be evaluated as

Qθ = 2
∑

λk,θ+λl,θ>0

|⟨λk,θ|∂θρθ|λl,θ⟩|2

λk,θ + λl,θ
. (4)

Moreover, the QFI is proportional to the Fisher-Bures metric

Qθ = 4gθ . (5)

We remark that for non full-rank quantum models the Lyapunov equation does not
have a unique solution. Nonetheless, there is no ambiguity in the definition of the QFI
for fixed-rank models, since the unspecified components of the SLD do not play any
role in Eq. (2) [3, 26].

2. Non-regular case

If either of the three regularity conditions listed above is not true, Props. 1 and 2 do
not hold in general. The second condition, if not verified, can often be realized by
simply restricting the parameter space Θ or by a change of parametrization. Let us
consider a trivial example, i.e. the statistical model ρθ = sin2 θ |0⟩ ⟨0|+cos2 θ |1⟩ ⟨1|. If
we consider θ ∈ R, the model is not identifiable, but it can be made so by restricting
the values of θ to the interval [0, π/2]. In a non-identifiable model, the true value of
the parameter is in general non-unique, therefore a local approach becomes impossible
and the Cramér-Rao bound is meaningless.

Let us now assume that the model is identifiable, or can be made so by a suitable
reparametrization. However, the rank of the statistical model, or its support in the
classical case, is allowed to vary by varying the parameter θ.
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2.1. Variable-rank models

Let us start from the classical case, since our conclusions may then be translated
to the quantum case. Denote by Xθ the support of pθ, i.e. the closure of the set
{x | pθ(x) > 0}. Let’s see why the derivation of the Cramér-Rao bound breaks down.
For simplicity, fix M = 1. Given any two statistics t1 and t2, their inner product is
defined in terms of the probability distribution pθ(x) as

⟨t1, t2⟩ = Eθ(t1t2) =

∫
Xθ

dx pθ(x)t1(x)t2(x) . (6)

Take t1(x) = θ̂(x) − θ and t2(x) = ∂θ log pθ(x). Then, by the Cauchy-Schwarz
inequality ⟨t1, t2⟩2 ≤ ⟨t1, t1⟩⟨t2, t2⟩, one obtains∫

Xθ

dx [θ̂(x)− θ] ∂θpθ(x) ≤ Varθ(θ̂) · Fθ . (7)

Now, if Xθ were independent of θ, and under very mild assumptions regarding the
smoothness of pθ (see e.g. [21, p. 516]), one could interchange the order of integration
and differentiation, and conclude that the LHS is equal to 1, which would imply the
Cramér-Rao bound. However, the very fact that Xθ depends on θ prevents one from
interchanging integration and differentiation and thus to obtain a general inequality
independent from the particular unbiased estimator θ̂. The conclusion is that in this
situation the Fisher information is not necessarily linked to the best possible precision
of unbiased estimators.

Moving to the quantum case, since the quantum Fisher information is the Fisher
information corresponding to the optimal measurement [5, 27], it is also not directly
linked to the best possible performance over the set of quantum estimation strategies.
Notice that both the Fisher information and the quantum Fisher information are still
well-defined even at the point θ̄ where the rank changes. They could, however, develop
a discontinuity there.

2.2. Discontinuity of classical and quantum Fisher information

Suppose now that the statistical model pθ describes the p.m.f. of a discrete random
variable X and that, as θ → θ̄, the probability pθ(ȳ) of one of its outcomes ȳ ∈ X goes
to zero. Since the Fisher information is computed only on the support of the model,
it follows that

∆F = lim
θ→θ̄

Fθ −Fθ̄ = lim
θ→θ̄

[∂θpθ(ȳ)]
2

pθ(ȳ)
. (8)

If the limit on the RHS is non-zero, then the Fisher information is discontinuous.

Proposition 3. The Fisher information Fθ at θ = θ̄ is continuous if both the speed
v = limθ→θ̄ ∂θpθ(y) and the acceleration a = limθ→θ̄ ∂

2
θpθ(y) with which pθ(y) → 0 are

zero. Otherwise, if v = 0 but a ̸= 0, the discontinuity is equal to ∆F = 2a and if
v ̸= 0 there is a discontinuity of the second kind.

Proof. Follows from L’Hôpital’s rule.

We now move to the quantum case and suppose that the rank of the quantum
statistical model ρθ diminishes by one at θ = θ̄ because one of its eigenvalues λm,θ
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vanishes as θ → θ̄. Is the quantum Fisher information discontinuous as θ → θ̄? By
looking at the formula in Eq. (4), one sees that the discontinuity can be evaluated as
(in the following we are omitting the dependence on θ of eigenvalues and eigenvectors)

∆Q = lim
θ→θ̄

Qθ −Qθ̄ (9)

= lim
θ→θ̄

(
4
∑
λk=0

|⟨λk|∂θρθ|λm⟩|2

λm
+ 2

|⟨λm|∂θρθ|λm⟩|2

2λm
.

)
(10)

By analyzing the first term, where the sum runs over the kernel of the statistical model
ρθ, we observe

|⟨λk|∂θρθ|λm⟩|2

λm
=

1

λm
|⟨λk|∂θλm⟩|2 |⟨λm|λm⟩|2 λ2m

= λm|⟨λk|∂θλm⟩|2 →
θ→θ̄

0 , (11)

as, by hypothesis, lim
θ→θ̄

λm = 0. The second term, by exploiting the orthogonality of

the eigenstates of ρθ, reads

|⟨λm|∂θρθ|λm⟩|2

λm
=

|⟨λm|∂θ(λm|λm⟩⟨λm|)|λm⟩|2

λm

=
(∂θλm)2

λm
+ 2λm|⟨∂θλm|λm⟩|2 →

θ→θ̄

(∂θλm)2

λm
. (12)

We are thus left with the following proposition:

Proposition 4. The quantum Fisher information Qθ at θ = θ̄ is continuous if both
the speed v = limθ→θ̄ ∂θλm and the acceleration a = limθ→θ̄ ∂

2
θλm with which the

eigenvalue λm is vanishing are zero. Otherwise, if v = 0 but a ̸= 0, the discontinuity
is equal to ∆Q = 2a and if v ̸= 0 there is a discontinuity of the second kind.

The discontinuity of the QFI in variable-rank models have been addressed in [12],
where in particular it was shown that the continuous version of the standard QFI is
proportional to the Bures metric, i.e.

lim
θ→θ̄

Qθ = 4gθ . (13)

This means that the Fisher-Bures metric can be exploited to evaluate the QFI only
for regular models whereas for non regular ones this link is broken. In addition, as
we pointed out above, the hypotheses at the basis of the derivation of the classical
and quantum CRBs do not hold for this kind of models, and consequently these
bounds can be violated and are of no use in quantum metrology. To better describe
this issue, in the next section we provide two simple quantum estimation problems
falling into this class of models. In both cases, we will show that the QFI is in fact
discontinuous and, in turn, it is easy to construct an estimator with zero variance in
the case θ = θ̄. The existence of zero-variance estimators for non-regular models with
parameter-dependent support is well-known in classical estimation [20].

Finally, we mention that the continuity of the QFI as a functional of the operators
ρ and ∂θρ has been studied [28]. Our point of view, similarly to [12], is to investigate
discontinuities of the QFI as a function of the parameter itself, by assuming that ρ and
∂θρ are both continuous functions of θ, also at the value θ̄. Nonetheless, the results
of [28] seem to be consistent with our findings.
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3. Examples of quantum statistical models with parameter dependent
rank

Let us now illustrate two paradigmatic examples of variable-rank quantum statistical
models: a model that can be mapped to a classical statistical model, such as the ones
discussed in [12], and a genuinely quantum statistical model. For the sake of clarity,
in both the examples we consider single-qubit systems.

We will show that the maximum likelihood estimator has zero variance when
θ = θ̄; this is an example of the meaninglessness of the CRB at this critical true value
of the parameter. However, we do not know if it is possible to build such zero-variance
estimators for all variable-rank quantum statistical models.

3.1. A classical quantum statistical model

A quantum statistical model is said to be classical if the family of quantum states ρθ
can be diagonalized with a θ-independent unitary, and thus the whole information on
the parameter is contained in the eigenvalues [29].
The simplest example of classical model is described by the family of two-dimensional
quantum states

ρp = p|0⟩⟨0|+ (1− p)|1⟩⟨1| , 0 ≤ p ≤ 1 . (14)

As it is apparent, this is also a variable-rank statistical model, when the parameter
to be estimated p takes the limiting values p̄ = {0, 1}. For a generic value of the
parameter between the two limiting values, 0 < p < 1, the QFI reads

Qp =
1

p(1− p)
, (15)

while in the two limiting values p̄, one gets Qp̄ = 1. As expected, one observes
a discontinuity of the second kind, and in particular an infinite Bures metric,
limp→p̄ gp = ∞.

The optimal measurement corresponds trivially to the projections on the states
{|0⟩⟨0|, |1⟩⟨1|} and clearly does not depend on the parameter to be estimated. For the
limiting values, it is easy to check that a maximum likelihood estimator would give a
variance equal to zero (in fact one always gets the same measurement outcome). It
is well known that the estimation of parameters on the boundary of the parameter
space breaks down the asymptotic normality of the maximum-likelihood estimator as
well as the validity of the CRB [30, 31, 32, 33, 34].

Therefore, while on the one hand it should be now clear that no CRB holds in
these instances, on the other hand this result would induce to say that the Bures
metric gives the correct figure of merit to asses the performances for θ → θ̄. However,
this is not always the case: one could check that by reparametrizing the family of
states to [12]

ρθ = sin2 θ|0⟩⟨0|+ cos2 θ|1⟩⟨1| , (16)

one would obtain that the Bures metric is identically equal for all values of θ, gθ = 1,
while the standard QFI is discontinuous and reads

Qθ =

{
4 θ ̸= kπ/2
0 θ = kπ/2

(17)
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However, also in this case the optimal measurement and the maximum likelihood
estimator would trivially give a zero variance estimation (at least if we restrict the
values of θ to [0, π/2], so that the model becomes identifiable). In turn, the CRB is
violated.

3.2. A genuine quantum statistical model

Let us now consider the quantum statistical model described by a family of two-
dimensional quantum states ρθ that solve the Markovian master equation

dρθ
dt

= −iθ
2
[σz, ρθ] +

κ

2
(σxρθσx − ρθ) , (18)

with initial condition ρθ(t = 0) = |+⟩⟨+|, where |+⟩ = (|0⟩ + |1⟩)/
√
2 denotes the

eigenstate of the x-Pauli matrix σx in terms of the eigenstates of the z-Pauli matrix
σz. From a physical point of view this master equation describes the evolution of a
spin-1/2 system, subjected to a phase-rotation due to a magnetic field proportional
to θ along the z-direction and subjected to transverse noise along the x-direction with
rate κ.

The master equation can be solved analytically and the corresponding QFI Qθ

and Bures metric gθ can be readily evaluated. For the parameter value θ̄ = 0, one
observes how the master equation has no effect on the initial state |+⟩ (the Pauli
matrix σx clearly commutes with its eigenstate |+⟩⟨+|). As a consequence, for θ̄ = 0,
the quantum state remains pure (and identical to the initial state) during the whole
evolution, showing that the rank of the corresponding quantum statistical model
changes by considering a non-zero frequency θ ̸= 0. Remarkably, unlike the previous
example, both eigenstates and eigenvalues of ρθ depend on the parameter θ; in this
sense, the quantum statistical model cannot be readily mapped onto a classical one.

The QFI and Bures metric at the discontinuity point θ = θ̄ can be analytically
evaluated as

Qθ̄=0 = 4
e−κt sinh2 κt

2

κ2
(19)

gθ̄=0 = 2
e−κt + κt− 1

κ2
. (20)

One can check that the eigenvalue of ρθ that goes to zero for θ → 0 is equal to

λ =
1

2

(
1 +

e−
κt
2

√
κ2 cosh(ξt) + κξ sinh(ξt)− 4θ2

ξ

)
, (21)

where ξ =
√
κ2 − 4θ2. The corresponding speed and acceleration read

v = lim
θ→0

∂θλ = 0 , (22)

a = lim
θ→0

∂2θλ =
2κt+ 4e−κt − e−2κt + 3

κ2
. (23)

It is then easy to check that, as predicted by Proposition 4, one gets ∆Q = 2a.
If one performs the optimal measurement for θ = 0, that trivially corresponds

to the projection on eigenstates of the Pauli operator σx, one can build a maximum
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likelihood estimator yielding a zero variance. However it is important to remark that,
contrarily to the previous example, in this model, the optimal measurement generally
depends on the true value of the parameter θ, and it has to be implemented via an
adaptive strategy, as previously mentioned. The adaptive scheme will be equivalent
to the optimal measurement only asymptotically, while for arbitrarily large but finite
number of repetitions M , one will implement a strategy with a small but finite
difference from the optimal one. In such a scenario, we heuristically expect that the
variance of the asymptotic estimator will be bounded by (four times) the continuous
Bures metric gθ̄, obtained via the limit of θ going to θ̄, and that one should consider this
figure of merit to quantify the overall performance of the estimation process. While
we lack a rigorous proof of this intuition, we believe that studying the performances
of realistic adaptive estimation schemes for these non-regular models is an open topic
for future research.

It is worth to remark that this quantum statistical model can be generalized to
N qubits. In Appendix A, for an initial GHZ state, we evaluate the limit of the QFI
for θ → 0, i.e. the Bures metric in θ = 0, as well as the discontinuous QFI obtained
for θ = 0 and we underline a markedly different behavior of the two quantities as
functions the probing time t. Incidentally, the limit of the QFI for θ → 0 is exactly the
quantity that we dubbed ultimate QFI for continuously monitored quantum systems,
i.e. obtained by optimizing over all the possible measurements on the system and
the environment causing the Markovian non-unitary dynamics [35, 36, 37]. In such a
framework, this quantity represents a valid statistical bound for all values of θ.

4. Conclusion

The quantum Cramér-Rao theorem is regarded as the foundation of quantum
estimation theory, promoting the QFI and the Bures metric as the two fundamental
figures of merit that one should consider in order to obtain the ultimate precision
achievable in the estimation of parameters in quantum systems. In this manuscript
we have addressed variable-rank quantum statistical models and the corresponding
discontinuity of the QFI. While this topic has been addressed before in the
literature [12], the validity of the quantum Cramér-Rao theorem was not properly
discussed. Here, we have shown in detail that the proof of the theorem in fact
breaks down in these pathological cases both in the classical and quantum case; as a
consequence, the bound can be no longer considered valid. We have also addressed
two paradigmatic examples, and considered the corresponding behaviour of the QFI,
of the Bures metric and of the variance of the maximum likelihood estimator. While in
regular cases these quantities typically coincide, we have shown how they may differ in
the presence of a discontinuity. In particular, for these qubit examples the maximum
likelihood estimator is actually deterministic at the critical true value of the paramater,
but we do not know wether this is true for variable-rank models in general. Overall
our results, apart from contributing to clarifying previous results on the discontinuity
of the QFI, pave the way to further studies on the relationships between optimal
estimators and Bures metric in non-regular quantum statistical models.
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Appendix A. Discontinuity for frequency estimation with N-qubit GHZ
states in transverse independent noise

The calculation presented in this Appendix is hinted, but not included, in Ref. [36];
we also mention that frequency estimation with transverse noise and a vanishing
parameter was also considered in Appendix D of [38], but without highlighting the
appearance of a discontinuity.

Appendix A.1. Evolution of a GHZ state in transverse noise

Greenberg-Horne-Zeilinger (GHZ) states are the prototypical example of states
showing a quantum advantage in metrology. Furthermore, they have a particularly
simple evolution under independent noises acting on the qubits [39, 40]. In particular,
we consider a N -qubit GHZ state

|ψGHZ⟩ = (|0⟩⊗N + |1⟩⊗N )/
√
2 , (A.1)

evolving according to a N -qubit version of the master equation (18):

dρ

dt
= −iθ

2

N∑
j

[
σ(j)
z , ρ

]
+
κ

2

 N∑
j=1

σ(j)
x ρσ(j)

x −Nρ

 , (A.2)

where the the superscript (j) labels operators acting on the j-th qubit (i.e. tensored
with the identity on all the other qubits). The evolved state ρ becomes a mixture of
states of the form |s⟩ ± |s̄⟩, where s is a binary string and s̄ is its bitwise negation,
e.g |s⟩ = |00101⟩ and |s̄⟩ = |11010⟩. In the computational basis the density matrix
maintains a cross-diagonal form.

It is clever to parametrise the matrix elements with an index m ∈ [0, N ], which
counts how many 1s appear in the binary string s, i.e. the sum of the binary
representation of s. Since we have N qubits there are 2N different possible strings, and
there are

(
N
m

)
different binary strings that sum to the valuem, so that

∑N
m=0

(
N
m

)
= 2N .

It turns out that the matrix elements of an evolved GHZ state only depend the value
m. With such a parametrization we have the following matrix elements [41]

ρm,m =
1

2

[
dmaN−m + dN−mam

]
ρm,N−m =

1

2

[
fm (b− ic)

N−m
+ fN−m (b+ ic)

m
]
,

(A.3)

where we can further notice the symmetry of the diagonal terms under the exchange
m→ N −m. The coefficients appearing in the expression are given by

a =
1

2

(
1 + e−κt

)
d =

1

2

(
1− e−κt

)
b = e−

κt
2 cosh

(
t

2

√
κ2 − 4θ2

)
(A.4)

f = κ
e−

κt
2 sinh

(
t
2

√
κ2 − 4θ2

)
√
κ2 − 4θ2

c = 2θ
e−

κt
2 sinh

(
t
2

√
κ2 − 4θ2

)
√
κ2 − 4θ2

.
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All these coefficients are real as long as θ < κ
2 , which is the case we are interested in,

since we want to take the limit θ → 0.

Appendix A.1.1. Piecewise QFI for a qubit The QFI for qubit states can be very
conveniently written via the Bloch representation of qubit states [42]:

ρ =
1

2
(1+ v⃗ · σ⃗) ; (A.5)

the QFI is easily expressed in terms of the Bloch vector v⃗

Qθ [ρ] =

{
|∂θv⃗|2 + |∂θ v⃗·v⃗|2

1−|v⃗|2 |v⃗| < 1

|∂θv⃗|2 |v⃗| = 1.
(A.6)

From this piecewise definition it is easy to see the possibility of a discontinuity. In
particular, for a qubit the only possible change of rank is that for θ̄ the state becomes
pure, i.e. |v⃗| = 1 and so the limθ→θ̄ gives rise to a 0

0 indeterminate form; we can then
use L’Hôpital’s rule and get

lim
θ→θ̄

Qθ [ρ] = −v⃗ · ∂2θ v⃗|θ=θ̄. (A.7)

Appendix A.2. Continuous and discontinuous QFI

Given the cross structure of the evolved density matrix and the symmetry of the
elements (A.3), we can reshuffle the 2N × 2N density matrix and write it as the direct
sum of 2× 2 matrices defined as follows

ςm =

(
ρm,m ρm,N−m

ρ∗m,N−m ρm,m

)
, (A.8)

where now we need only half the values of the index m = 0, . . . , ⌊N/2⌋. Each of these
ςm is repeated

(
N
m

)
times, except the last matrix for m = ⌊N/2⌋ that appears 1

2

(
N
m

)
times if N is even and

(
N
m

)
times if N is odd. This reshuffling is obtained by applying

orthogonal permutation matrices that do not change the QFI. The diagonal elements
do not depend on θ and the derivative of ςm reads

∂θςm =

(
0 ∂θρm,N−m

∂θρ
∗
m,N−m 0

)
. (A.9)

We can renormalized the matrices ςm to get proper qubit states, i.e.

ς̃m =
1

2

(
1

ρm,N−m

ρm,m

ρ∗
m,N−m

ρm,m
1

)
∂θ ς̃m =

1

2

(
0

∂θρm,N−m

ρm,m

∂θρ
∗
m,N−m

ρm,m
0

)
. (A.10)

With this normalization the Bloch vector of ς̃m is then [Re (ρm,N−m) , Im (ρm,N−m) , 0] /ρm,m.
It is not hard to see that the QFI of the global state is the average of the QFIs

of these qubit states

Q [ρ] =

N∑
m=0

(
N

m

)
ρm,mQ [ς̃m] , (A.11)
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where the factor 2 in the normalization vanishes because we have extended the sum to
N and divided by 2, this is possible since Q [ςm] = Q [ςN−m] (the two states differ only
for a conjugation of the off-diagonal elements). For θ = 0 we have that ρm,N−m = ρm,m

and the states ς̃m all become pure, with Bloch vector [1, 0, 0], so that the global N
qubit state goes from full rank (i.e. 2N ) to rank 2N−1. To calculate the limit of the
QFI for θ → 0 we need to use Eq. (A.7). In this case it is possible to compute the
sum (A.11) explicitly

Qθ→0 = −
N∑

m=0

(
N

m

)
∂2θρm,N−m

∣∣∣∣∣
θ=0

=
N2 (1− e−κt)

2
+N

[
2κt+ 1− (2− e−κt)

2
]

κ2
,

(A.12)
this equation corresponds to the ultimate QFI obtained in [36], i.e. the best possible
precision achievable by continuously measuring the environment degrees of freedom
causing the non-unitary part of the Markovian evolution (A.2).

On the other hand, the discontinuous QFI for θ = 0 is obtained by applying the
second line of Eq. (A.6), which results in

Qθ=0 =

N∑
m=0

(
N

m

)
|∂θρm,N−m|2

ρm,m

∣∣∣∣∣
θ=0

. (A.13)

In Fig. A1 we plot the two quantities Qθ→0 and Qθ=0 for some values of N as a
function of the evolution time t. From the plots one can see that the behaviour for
long evolution times is indeed dramatically different.

θ→0

θ=0

2 4 6 8 10
t

0.5

1.0

1.5

/t
N=1

(a)

θ→0

θ=0

2 4 6 8 10
t

200

400

600

800

1000

/t
N=50

(b)

θ→0

θ=0

2 4 6 8 10
t

5000

10000

15000

/t
N=200

(c)

Figure A1: Plots of the QFI per unit time as a function of time, for κ = 1, for different
values of N .
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