These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of the nonlinear Gross-Pitaevskii equation. Section 6 addresses fermionic systems (characterized by antisymmetric wave functions); here, the fermionic mean-field regime is naturally linked with a semiclassical regime, and it is proven that the evolution of approximate Slater determinants can be approximated using the nonlinear Hartree-Fock equation. In closing, Section 7 reexamines the same fermionic mean-field regime, but with a focus on mixed quasi-free initial data approximating thermal states at positive temperature.

Effective Evolution Equations from Quantum Dynamics / N. Benedikter, M. Porta, B. Schlein. - [s.l] : Springer, 2016. - ISBN 9783319248967. (SPRINGERBRIEFS IN MATHEMATICAL PHYSICS) [10.1007/978-3-319-24898-1]

Effective Evolution Equations from Quantum Dynamics

N. Benedikter;
2016

Abstract

These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of the nonlinear Gross-Pitaevskii equation. Section 6 addresses fermionic systems (characterized by antisymmetric wave functions); here, the fermionic mean-field regime is naturally linked with a semiclassical regime, and it is proven that the evolution of approximate Slater determinants can be approximated using the nonlinear Hartree-Fock equation. In closing, Section 7 reexamines the same fermionic mean-field regime, but with a focus on mixed quasi-free initial data approximating thermal states at positive temperature.
2016
Bosonic Mean-field Regime; Hartree-Fock Equation; Many-body Quantum Dynamics
Settore MAT/07 - Fisica Matematica
Effective Evolution Equations from Quantum Dynamics / N. Benedikter, M. Porta, B. Schlein. - [s.l] : Springer, 2016. - ISBN 9783319248967. (SPRINGERBRIEFS IN MATHEMATICAL PHYSICS) [10.1007/978-3-319-24898-1]
Book (author)
File in questo prodotto:
File Dimensione Formato  
heidelberg.pdf

accesso aperto

Descrizione: book file arxiv corrected
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 632.04 kB
Formato Adobe PDF
632.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/703472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact