We prove a quantitative structure theorem for metrics on R^n that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in R^n related to the Yamabe flow.

A Quantitative Analysis of Metrics on R-n with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows / G. Ciraolo, A. Figalli, F. Maggi. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - :21(2018), pp. rnx071.6780-rnx071.6797.

A Quantitative Analysis of Metrics on R-n with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows

G. Ciraolo;
2018

Abstract

We prove a quantitative structure theorem for metrics on R^n that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in R^n related to the Yamabe flow.
Extinction profile; S-N; equation; perturbation; existence; sobolev
Settore MAT/05 - Analisi Matematica
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
27 - Ciraolo_Maggi_Figalli_IMRN.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 151.64 kB
Formato Adobe PDF
151.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/675077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact