We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until β-equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe = 1051 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significant enough to justify further investigations with detailed numerical simulations of supernova explosions.

Systematic thermal reduction of neutronization in core-collapse supernovae / A. F. Fantina, P. Donati, P. M. Pizzochero. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 676:4-5(2009), pp. 140-145.

Systematic thermal reduction of neutronization in core-collapse supernovae

A. F. Fantina
Primo
;
P. Donati
Secondo
;
P. M. Pizzochero
Ultimo
2009

Abstract

We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until β-equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe = 1051 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significant enough to justify further investigations with detailed numerical simulations of supernova explosions.
Gravitational collapse; Neutronization; Supernova; Symmetry energy
Settore FIS/04 - Fisica Nucleare e Subnucleare
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/67087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact