The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs. The Polycomb repressor complex 2 (PRC2) deposits H3K27me2 and H3K27me3 repressive histone modifications in spatially defined chromatin domains to maintain cellular identity. Streubel et al. identify the H3K36me2 methyltransferase Nsd1 as a key modulator of PRC2 to restrict H3K27me3 deposition and, thereby, to demarcate H3K27me3 from H3K27me2 domains in ESCs.

The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells / G. Streubel, A. Watson, S.G. Jammula, A. Scelfo, D.J. Fitzpatrick, G. Oliviero, R. Mccole, E. Conway, E. Glancy, G.L. Negri, E. Dillon, K. Wynne, D. Pasini, N.J. Krogan, A.P. Bracken, G. Cagney. - In: MOLECULAR CELL. - ISSN 1097-2765. - 70:2(2018 Apr 19), pp. 371-379.e5. [10.1016/j.molcel.2018.02.027]

The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells

S.G. Jammula;A. Scelfo;D. Pasini;
2018-04-19

Abstract

The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs. The Polycomb repressor complex 2 (PRC2) deposits H3K27me2 and H3K27me3 repressive histone modifications in spatially defined chromatin domains to maintain cellular identity. Streubel et al. identify the H3K36me2 methyltransferase Nsd1 as a key modulator of PRC2 to restrict H3K27me3 deposition and, thereby, to demarcate H3K27me3 from H3K27me2 domains in ESCs.
chromatin complexes; embryonic stem cells; EZH2; H3K27me2; H3K27me3; histone methylation; NSD1; PRC2; SUZ12; Animals; Carrier Proteins; Enhancer of Zeste Homolog 2 Protein; Gene Expression Regulation, Developmental; HEK293 Cells; Histones; Humans; Methylation; Mice; Mouse Embryonic Stem Cells; Nuclear Proteins; Polycomb Repressive Complex 2; Protein Processing, Post-Translational; Chromatin Assembly and Disassembly
Settore BIO/11 - Biologia Molecolare
Article (author)
File in questo prodotto:
File Dimensione Formato  
PIIS1097276518301722.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/661524
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 67
social impact