We introduce a novel implementation of a reinforcement learning (RL) algorithm which is designed to find an optimal jet grooming strategy, a critical tool for collider experiments. The RL agent is trained with a reward function constructed to optimize the resulting jet properties, using both signal and background samples in a simultaneous multilevel training. We show that the grooming algorithm derived from the deep RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in improved mass resolution for boosted objects. Given a suitable reward function, the agent learns how to train a policy which optimally removes soft wide-angle radiation, allowing for a modular grooming technique that can be applied in a wide range of contexts. These results are accessible through the corresponding GRoomRL framework.

Jet grooming through reinforcement learning / S. Carrazza, F.A. Dreyer. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:1(2019 Jul 15), pp. 014014.014014-1-014014.014014-10.

Jet grooming through reinforcement learning

S. Carrazza
Primo
;
2019

Abstract

We introduce a novel implementation of a reinforcement learning (RL) algorithm which is designed to find an optimal jet grooming strategy, a critical tool for collider experiments. The RL agent is trained with a reward function constructed to optimize the resulting jet properties, using both signal and background samples in a simultaneous multilevel training. We show that the grooming algorithm derived from the deep RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in improved mass resolution for boosted objects. Given a suitable reward function, the agent learns how to train a policy which optimally removes soft wide-angle radiation, allowing for a modular grooming technique that can be applied in a wide range of contexts. These results are accessible through the corresponding GRoomRL framework.
English
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Articolo
Esperti anonimi
Pubblicazione scientifica
   Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
   NNNPDF
   EUROPEAN COMMISSION
   H2020
   740006
15-lug-2019
American Physical Society
100
1
014014
014014-1
014014-10
10
Pubblicato
Periodico con rilevanza internazionale
crossref
Aderisco
info:eu-repo/semantics/article
Jet grooming through reinforcement learning / S. Carrazza, F.A. Dreyer. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:1(2019 Jul 15), pp. 014014.014014-1-014014.014014-10.
open
Prodotti della ricerca::01 - Articolo su periodico
2
262
Article (author)
si
S. Carrazza, F.A. Dreyer
File in questo prodotto:
File Dimensione Formato  
PhysRevD.100.014014.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/659227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact