In team sports, non-contact ACL and MCL injuries occur during abrupt changes of direction, like turns or cutting manoeuvres. Fatigue affects dynamic neuromuscular control and increases knee injury risk. This study analysed how lower limb joints and centre-of-mass kinematics are affected throughout a high-intensity running protocol involving repeated 180°-turns. Twenty young men (18–23 years, BMI: 20.8–24.4 kg m −2 ) completed a 5-m shuttle running trial lasting 5 min at an average speed of 75% of their maximum aerobic speed. During the test, cardio-metabolic parameters were obtained, together with joints and centre-of-mass kinematics, using a motion capture system. Kinematic data were compared between the first and the last minute of exercise. Perceived exercise intensity ranged from “hard” to “maximum exertion” and post-exercise lactate concentration ranged from 5.4 to 15.5 mM. The repetition of 180°-turns induced a substantial reduction of hip (−60%, p <.001, large effect) and knee flexion (−40%, p =.003, medium-to-large effect), and an increase of hip adduction and internal rotation (+25–30%, p <.05, medium-to-large effect). Since such movements are factors increasing the likelihood of non-contact knee injuries, we concluded that the prolonged repetition of turns may expose participants to increased risk of ligament failure. Prevention programmes should include discipline-specific neuromuscular training especially in late practices.

Kinematic effects of repeated turns while running / M. Zago, F. Esposito, F. Bertozzi, B. Tritto, S. Rampichini, C. Galvani, M. Galli, C. Sforza. - In: EUROPEAN JOURNAL OF SPORT SCIENCE. - ISSN 1746-1391. - 19:8(2019), pp. 1072-1081. [10.1080/17461391.2019.1578416]

Kinematic effects of repeated turns while running

M. Zago
Primo
;
F. Esposito
Secondo
;
F. Bertozzi;S. Rampichini;C. Sforza
Ultimo
2019

Abstract

In team sports, non-contact ACL and MCL injuries occur during abrupt changes of direction, like turns or cutting manoeuvres. Fatigue affects dynamic neuromuscular control and increases knee injury risk. This study analysed how lower limb joints and centre-of-mass kinematics are affected throughout a high-intensity running protocol involving repeated 180°-turns. Twenty young men (18–23 years, BMI: 20.8–24.4 kg m −2 ) completed a 5-m shuttle running trial lasting 5 min at an average speed of 75% of their maximum aerobic speed. During the test, cardio-metabolic parameters were obtained, together with joints and centre-of-mass kinematics, using a motion capture system. Kinematic data were compared between the first and the last minute of exercise. Perceived exercise intensity ranged from “hard” to “maximum exertion” and post-exercise lactate concentration ranged from 5.4 to 15.5 mM. The repetition of 180°-turns induced a substantial reduction of hip (−60%, p <.001, large effect) and knee flexion (−40%, p =.003, medium-to-large effect), and an increase of hip adduction and internal rotation (+25–30%, p <.05, medium-to-large effect). Since such movements are factors increasing the likelihood of non-contact knee injuries, we concluded that the prolonged repetition of turns may expose participants to increased risk of ligament failure. Prevention programmes should include discipline-specific neuromuscular training especially in late practices.
Cutting manoeuvres; knee joint; ACL; change of direction; injury risk; fatigue
Settore BIO/16 - Anatomia Umana
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
Article (author)
File in questo prodotto:
File Dimensione Formato  
CoD_EJSportSci_2019.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
17461391.2019.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/630807
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact