Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome- wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or upregulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.

Genome-wide definition of promoter and enhancer usage during neural induction of human embryonic stem cells / V. Poletti, A.D. Carri, G.M. Tagliazucchi, A. Faedo, L. Petiti, E.M.C. Mazza, C. Peano, G. De Bellis, S. Bicciato, A. Miccio, E. Cattaneo, F. Mavilio. - In: PLOS ONE. - ISSN 1932-6203. - 10:5(2015 May 15), pp. 0126590.1-0126590.24. [10.1371/journal.pone.0126590]

Genome-wide definition of promoter and enhancer usage during neural induction of human embryonic stem cells

A.D. Carri;A. Faedo;L. Petiti;E.M.C. Mazza;E. Cattaneo;
2015

Abstract

Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome- wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or upregulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.
English
Cell Differentiation; Cell Line; Chromosome Mapping; Enhancer Elements, Genetic; Epigenesis, Genetic; Genome, Human; Genome-Wide Association Study; Histones; Human Embryonic Stem Cells; Humans; Neurons; Pluripotent Stem Cells; Promoter Regions, Genetic; RNA, Untranslated; Transcription Initiation Site; Transcription, Genetic; Up-Regulation; Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)
Settore BIO/14 - Farmacologia
Articolo
Esperti anonimi
Pubblicazione scientifica
15-mag-2015
Public Library of Science
10
5
0126590
1
24
24
Pubblicato
Periodico con rilevanza internazionale
scopus
Aderisco
info:eu-repo/semantics/article
Genome-wide definition of promoter and enhancer usage during neural induction of human embryonic stem cells / V. Poletti, A.D. Carri, G.M. Tagliazucchi, A. Faedo, L. Petiti, E.M.C. Mazza, C. Peano, G. De Bellis, S. Bicciato, A. Miccio, E. Cattaneo, F. Mavilio. - In: PLOS ONE. - ISSN 1932-6203. - 10:5(2015 May 15), pp. 0126590.1-0126590.24. [10.1371/journal.pone.0126590]
open
Prodotti della ricerca::01 - Articolo su periodico
12
262
Article (author)
no
V. Poletti, A.D. Carri, G.M. Tagliazucchi, A. Faedo, L. Petiti, E.M.C. Mazza, C. Peano, G. De Bellis, S. Bicciato, A. Miccio, E. Cattaneo, F. Mavilio
File in questo prodotto:
File Dimensione Formato  
https___journals.plos.org_plosone_article_file_id=10.1371_journal.pone.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.62 MB
Formato Adobe PDF
6.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/630793
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact