We construct a space of overconvergent modular forms of characteristic p, a compact operator on this space and we show that the characteristic series of this operator is the reduction modulo p of Coleman's universal series. We prove that finite slope overconvergent modular forms in positive characteristic can be deformed to characteristic 0.
Le halo spectral / F. Andreatta, A. Iovita, V. Pilloni. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - 51:3(2018), pp. 603-655.
Le halo spectral
F. Andreatta;
2018
Abstract
We construct a space of overconvergent modular forms of characteristic p, a compact operator on this space and we show that the characteristic series of this operator is the reduction modulo p of Coleman's universal series. We prove that finite slope overconvergent modular forms in positive characteristic can be deformed to characteristic 0.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ens_ann-sc_51_603-655.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
876.07 kB
Formato
Adobe PDF
|
876.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.